Coupling fire and traffic simulation models to set wildfire evacuation triggers

Dapeng Li, Ph.D.
Department of Geography, South Dakota State University
Email: dapeng.li@sdstate.edu
Thomas J. Cova, Ph.D.
Philip E. Dennison, Ph.D.
Department of Geography, University of Utah
Outline

• Introduction to wildfire evacuation
• A review of wildfire evacuation modeling
• System coupling in wildfire evacuation modeling
 – Coupling wildfire spread and traffic simulation models to improve evacuation timing and warning (Li, Cova, & Dennison, in press)
• Ongoing and future work
Setting Wildfire Evacuation Triggers by Coupling Fire and Traffic Simulation Models: A Spatiotemporal GIS Approach

Wildfire evacuation in the western U.S.

2012 Wildfire Evacuation Map in the Western U.S.

Waldo Canyon Fire
6/23/2012~7/20/2012
Caused the evacuation of over 32,000 residents
Two deaths, approximately 346 homes were destroyed
The most expensive fire in Colorado state history (more than $352.6 million)
<table>
<thead>
<tr>
<th>FIRE NAME (CAUSE)</th>
<th>DATE</th>
<th>COUNTY</th>
<th>ACRES</th>
<th>STRUCTURES</th>
<th>DEATHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUBBS (Under Investigation)</td>
<td>October 2017</td>
<td>Sonoma</td>
<td>36,807</td>
<td>5,643</td>
<td>22</td>
</tr>
<tr>
<td>TUNNEL - Oakland Hills (Rekindle)</td>
<td>October 1991</td>
<td>Alameda</td>
<td>1,600</td>
<td>2,900</td>
<td>25</td>
</tr>
<tr>
<td>CEDAR (Human Related)</td>
<td>October 2003</td>
<td>San Diego</td>
<td>273,246</td>
<td>2,820</td>
<td>15</td>
</tr>
<tr>
<td>VALLEY (Electrical)</td>
<td>September 2015</td>
<td>Lake, Napa & Sonoma</td>
<td>76,067</td>
<td>1,955</td>
<td>4</td>
</tr>
<tr>
<td>WITCH (Powerlines)</td>
<td>October 2007</td>
<td>San Diego</td>
<td>197,990</td>
<td>1,650</td>
<td>2</td>
</tr>
<tr>
<td>NUNS (Under Investigation)</td>
<td>October 2017</td>
<td>Sonoma</td>
<td>54,382</td>
<td>1,355</td>
<td>2</td>
</tr>
<tr>
<td>THOMAS (Under Investigation)</td>
<td>December 2017</td>
<td>Ventura & Santa Barbara</td>
<td>281,893</td>
<td>1,063</td>
<td>1</td>
</tr>
<tr>
<td>OLD (Human Related)</td>
<td>October 2003</td>
<td>San Bernardino</td>
<td>91,281</td>
<td>1,003</td>
<td>6</td>
</tr>
<tr>
<td>JONES (Undetermined)</td>
<td>October 1999</td>
<td>Shasta</td>
<td>26,200</td>
<td>954</td>
<td>1</td>
</tr>
<tr>
<td>BUTTE (Powerlines)</td>
<td>September 2015</td>
<td>Amador & Calaveras</td>
<td>70,868</td>
<td>921</td>
<td>2</td>
</tr>
<tr>
<td>ATLAS (Under Investigation)</td>
<td>October 2017</td>
<td>Napa & Solano</td>
<td>51,624</td>
<td>781</td>
<td>6</td>
</tr>
<tr>
<td>PAINT (Arson)</td>
<td>June 1990</td>
<td>Santa Barbara</td>
<td>4,900</td>
<td>641</td>
<td>1</td>
</tr>
<tr>
<td>FOUNTAIN (Arson)</td>
<td>August 1992</td>
<td>Shasta</td>
<td>63,960</td>
<td>636</td>
<td>0</td>
</tr>
<tr>
<td>SAYRE (Misc.)</td>
<td>November 2008</td>
<td>Los Angeles</td>
<td>11,262</td>
<td>604</td>
<td>0</td>
</tr>
<tr>
<td>CITY OF BERKELEY (Powerlines)</td>
<td>September 1923</td>
<td>Alameda</td>
<td>130</td>
<td>584</td>
<td>0</td>
</tr>
<tr>
<td>HARRIS (Under Investigation)</td>
<td>October 2007</td>
<td>San Diego</td>
<td>90,440</td>
<td>548</td>
<td>8</td>
</tr>
<tr>
<td>REDWOOD VALLEY (Under Investigation)</td>
<td>October 2017</td>
<td>Mendocino</td>
<td>36,523</td>
<td>544</td>
<td>9</td>
</tr>
<tr>
<td>BEL AIR (Undetermined)</td>
<td>November 1961</td>
<td>Los Angeles</td>
<td>6,090</td>
<td>484</td>
<td>0</td>
</tr>
<tr>
<td>LAGUNA (Arson)</td>
<td>October 1993</td>
<td>Orange</td>
<td>14,437</td>
<td>441</td>
<td>0</td>
</tr>
<tr>
<td>ERSKINE (Under Investigation)</td>
<td>June 2016</td>
<td>Kern</td>
<td>46,684</td>
<td>386</td>
<td>2</td>
</tr>
</tbody>
</table>

"Structures" include homes, outbuildings (barns, garages, sheds, etc) and commercial properties destroyed.

This list does not include fire jurisdiction. These are the Top 20 regardless of whether they were state, federal, or local responsibility.

1/12/2018
The Tubbs Fire

• Oct. 8 – 31, 2017
• The most destructive wildfire in California history
 – 5,100+ structures
 – 22 deaths

October 9, 2017, MODIS

November 2017, Napa, Sonoma fires, Landsat 8, bands 753
Wildfire evacuation modeling

• Evacuation traffic simulation (Southworth, 1991)
• Wildfire evacuation traffic simulation (Cova & Johnson, 2002)
• Recent trends
 – System coupling (Beloglazov et al., 2016; Cova et al., 2017)
 – Interdisciplinary collaboration (Trainor et al., 2012)
Triggers in environmental hazards

(Cova et al., 2017)
System coupling in wildfire evacuation

Wildfire evacuation

Human system
- Evacuation timing
- Evacuation zoning
- Evacuation warning
- Evacuation traffic
- Spatial cognition

Environmental system
- Weather conditions
- Land cover
- Topography
- Fire-spread
- Evacuation routes
- Geographic features

Trigger modeling
Interdisciplinary collaboration

Wildfire evacuation modeling

Social Sciences

- Sociology, psychology, etc. (e.g., McCaffrey)

Natural Sciences

- Wildfire spread modeling (e.g., Coen)

Engineering

- Evacuation traffic simulation (e.g., Cova)

GIS, computer engineering, etc.

Physics, mathematics, etc.
Trigger modeling

• Wildfire evacuation trigger-points (Cova et al., 2005)

• Wildfire evacuation trigger modeling

Trigger modeling

- Fire spread
- Evacuation timing
- Evacuation warning
- Communication

(Dennison et al., 2007)
System coupling in wildfire evacuation modeling

Evacuation traffic

Fire spread

Evacuation timing and warning
Study site: Julian, California
Study site: Julian, California
Pictures taken by Dapeng Li on 8/9/2015 in Julian, California
Setting wildfire evacuation triggers by coupling fire and traffic simulation models

(Li, Cova, & Dennison, in press)
Step 1: estimate evacuation times using traffic simulation

- Household data
 - Trip generation
 - Mobilization
 - Destination selection
 - Evacuation route selection
 - Estimated evacuation times
 - Evacuation travel demand modeling
 - Evacuation trip distribution modeling
 - Evacuation traffic assignment modeling
Illustration of the four estimated evacuation times
Step 2: create probability-based trigger buffers

- Community and its n estimated evacuation times
- Topographic data
 - Fuel model and moisture data
 - Wind data

1. Perform Fire spread modeling
2. Construct fire travel time network
3. Reverse all edges and traverse from the community

Probability-based trigger buffers
Illustration of probability-based trigger buffers

(a) Cumulative probability
(b) Probability-based trigger buffers
Step 3: Conceptual diagram of the evaluation procedure

Person-threat distance (Beloglazov, Almashor, Abebe, Richter, and Steer, 2016)
Spatio-temporal computation and visualization
Households and the evacuation route system
MATSim: Agent-based microscopic traffic simulation

- An open-source agent-based microscopic traffic simulator
- Trips from the origin to the destination
 - The number of “persons” from each household
 - A Poisson distribution
- Agents will choose the shortest path
- Departure times
 - A normal distribution: $N(\mu, \sigma)$
- Calculate the evacuation times taken when 25%, 50%, 75%, and 95% of the evacuees have arrived at the safe areas ($T_{25}, T_{50}, T_{75}, T_{95}$)
Fire perimeters from wildfire simulation

<table>
<thead>
<tr>
<th>Wind direction</th>
<th>Wind speed (km/h)</th>
<th>Dead fuel moisture (%)</th>
<th>Live fuel moisture (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 h</td>
<td>10 h</td>
</tr>
<tr>
<td>South</td>
<td>16</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Two evacuation scenarios

Table 1 Parameters for different evacuation scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>λ</th>
<th>μ (min)</th>
<th>σ (min)</th>
<th>earliest (min)</th>
<th>latest (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario</th>
<th>T_{25}</th>
<th>T_{50}</th>
<th>T_{75}</th>
<th>T_{95}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>45 (1%)</td>
<td>78 (4%)</td>
<td>113 (2%)</td>
<td>141 (2%)</td>
</tr>
<tr>
<td>mean</td>
<td>49 (64%)</td>
<td>82 (56%)</td>
<td>119 (56%)</td>
<td>149 (58%)</td>
</tr>
<tr>
<td>max</td>
<td>53 (100%)</td>
<td>88 (100%)</td>
<td>128 (100%)</td>
<td>160 (100%)</td>
</tr>
<tr>
<td>sd</td>
<td>1.5</td>
<td>2.4</td>
<td>3.4</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>69 (4%)</td>
<td>139 (2%)</td>
<td>210 (1%)</td>
<td>268 (1%)</td>
</tr>
<tr>
<td>mean</td>
<td>72 (74%)</td>
<td>144 (55%)</td>
<td>219 (63%)</td>
<td>278 (57%)</td>
</tr>
<tr>
<td>max</td>
<td>75 (100%)</td>
<td>151 (100%)</td>
<td>229 (100%)</td>
<td>292 (100%)</td>
</tr>
<tr>
<td>sd</td>
<td>1.3</td>
<td>2.7</td>
<td>4.0</td>
<td>4.2</td>
</tr>
</tbody>
</table>
Trigger buffers generated using 100% evacuation times

(a) Scenario 1

(b) Scenario 2

Legend
- 53 min (T25)
- 88 min (T50)
- 128 min (T75)
- 160 min (T95)

Legend
- 75 min (T25)
- 151 min (T50)
- 229 min (T75)
- 292 min (T95)

Legend
- road
- Julian

0 2 4 6 8 km
Summary

• System coupling
 – Fire spread and trigger modeling, traffic simulation
 – Spatiotemporal modeling

• Agent-based modeling and simulation
 – Household-level evacuation warning
 – Agent-based evacuation traffic simulation

• Research and Development (R&D)
 – Object-oriented design/programming (OOD/P)
 – C/C++, Python, Java, R
 – Various GIS tools
IBM Research’s work on wildfire evacuation modeling and simulation

Simulation of wildfire evacuation with dynamic factors and model composition

Anton Beloglazova, Mahathir Almahmorb, Ernyas Abebec, Jan Richterd, e, Kent Charles Barton Steera, b

aIBM Research

Simulation Modelling Practice and Theory
Volume 60, January 2016, Pages 144–159

ELSEVIER
Ongoing work:
Open wildfire evacuation trigger modeling

Wildfire spread module → Trigger modeling module

Bringing advanced geospatial technologies to the world
Future work

• Cloud-based wildfire evacuation modeling
 – Cloud computing
• Household-level evacuation warning systems
 – Mobile computing
 – Location-based services (LBS)
• Wildfire evacuation planning
 – High-performance computing
• House loss in wildfires
 – Information needs
 – Notification systems
Reference

Q & A

Dapeng Li, Ph.D.
Department of Geography, South Dakota State University
Email: dapeng.li@sdstate.edu
Website: http://lidapeng.github.io
GitHub: https://github.com/lidapeng