Natural Ventilation of a Short Road Tunnel – Application of FDS+EVAC

Katie McQuade-Jones and Matt Bilson
WSP USA
DECK PARK
OVERBUILD
DECK PARK
OVERBUILD
Section 11.1.1:
Emergency ventilation shall not be required in tunnels less than 3280 feet in length, where it can be shown by an engineering analysis that the level of safety provided by a mechanical ventilation system is equaled or exceeded by enhancing the means of egress or the use of natural ventilation.
Section 11.1.1:
Emergency ventilation shall not be required in tunnels less than 3280 feet in length, where it can be shown by an engineering analysis that the level of safety provided by a mechanical ventilation system is equaled or exceeded by enhancing the means of egress or the use of natural ventilation.

How do we show equivalent level of safety quantitatively?
EXISTING SHORT TUNNELS

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (m ft.)</th>
<th>Urban / rural</th>
<th>Traffic</th>
<th>Year</th>
<th>Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I5 Tunnel, Seattle, WA</td>
<td>167 (547)</td>
<td>U</td>
<td>Uni</td>
<td>1988</td>
<td>Natural</td>
</tr>
<tr>
<td>Dyer Avenue, New York</td>
<td>168 (550)</td>
<td>U</td>
<td>Bi</td>
<td>*</td>
<td>Mechanical</td>
</tr>
<tr>
<td>Rockville, Intercounty Conn, Maryland</td>
<td>195 (640)</td>
<td>R</td>
<td>Bi</td>
<td>2010</td>
<td>Natural</td>
</tr>
<tr>
<td>Pasadena, I210, California</td>
<td>271 (889)</td>
<td>U</td>
<td>Uni</td>
<td>2003</td>
<td>Natural</td>
</tr>
<tr>
<td>College Avenue Tunnel, Milwaukee, WI</td>
<td>277 (910)</td>
<td>U</td>
<td>Uni</td>
<td>2010</td>
<td>Mechanical</td>
</tr>
</tbody>
</table>
DEFINING LEVEL OF SAFETY

NFPA 502 Section 11.2.2:

In all cases, the desired goal shall be to provide an evacuation path for motorists who are exiting from the tunnel and to facilitate fire-fighting operations.
DEFINING LEVEL OF SAFETY

NFPA 502 Section 11.2.2:
In all cases, the desired goal shall be to provide an evacuation path for motorists who are exiting from the tunnel and to facilitate fire-fighting operations.

— Use tenable egress path criteria to demonstrate safety
— Traditional methods use visibility > 10 m to define tenability
— For some fire scenarios in short tunnels, might not be able to show visibility of 10 m (e.g. fuel tanker fire)
TENABLE EGRESS PATH CRITERIA

— Traditional methods use visibility > 10 m to define tenability
— For some fire scenarios in short tunnels, might not be able to show visibility of 10 m (e.g. fuel tanker fire)
— Fractional effective dose (FED) and fractional irritant concentration method
— Track FED of toxic gases and heat exposure
— Track FIC of toxic gases
— Set criteria so more susceptible occupants can self evacuate
TENABLE EGRESS PATH CRITERIA

— Toxic gas FED based on Purser’s equation (used in EVAC)
— Heat exposure FED calculated based on NFPA 502 Annex B equations
 — Output visibility and temperature profiles to calculate this for a theoretical occupant

— To be considered a passing result:
 — Toxic gas FED < 0.3
 — Heat exposure FED < 0.3
 — Toxic gas FIC < 0.3
SCENARIO SCHEMATIC

- Cross passage door
- Fire vehicle
- Stopped passenger car

← +2% grade, 5.5 m/s adverse wind

SCENARIO SCHEMATIC

- **Fire vehicle**
- **Stopped passenger car**
- **Cross passage door**
- **Exit**
- **Entrance**

- Dangerous goods vehicle (DGV) fires versus heavy goods vehicle (HGV) fires
- Quantity of egress doors
- Length of tunnel (600 ft. and 1000 ft.)
- 2 lane vs. 6 lane tunnels

+2% grade, 5.5 m/s adverse wind

FIRE SCENARIO

Fire heat release rate curves

FHRR (MW)

Time (min)

DGV

HGV
COMBUSTION REACTION

— Emissions from an experimental vehicle fire used as a basis (Lonnermark and Blomqvist)
— Reaction included: CO, NO₂, HCN, HCl, SO₂, C₃H₄O, and CH₂O, soot
— All species included in FDS+EVAC FED/FIC calculation
RESULTS SUMMARY

<table>
<thead>
<tr>
<th>Length (m)</th>
<th>Lanes</th>
<th>Design fire</th>
<th>Provisions to meet NPFA 502 with natural ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>2</td>
<td>HGV</td>
<td>Portal egress</td>
</tr>
<tr>
<td>180</td>
<td>2</td>
<td>DGV</td>
<td>Additional egress doors</td>
</tr>
<tr>
<td>180</td>
<td>6</td>
<td>DGV</td>
<td>Portal egress</td>
</tr>
<tr>
<td>305</td>
<td>2</td>
<td>HGV</td>
<td>Additional egress doors</td>
</tr>
<tr>
<td>305</td>
<td>6</td>
<td>DGV</td>
<td>Additional egress doors</td>
</tr>
</tbody>
</table>
VISIBILITY AT 2.4 M ABOVE ROADWAY

- +2% grade, 5.5 m/s adverse wind
- Fire vehicle
- 180 m tunnel, HGV fire
- Slice taken at 310 seconds (last occupant exits)
SECTION VIEW OF TEMPERATURE

— 180 m tunnel, HGV fire
— Slice taken at 310 seconds (last occupant exits)
VISIBILITY AT 2.4 M ABOVE ROADWAY

+2% grade, 5.5 m/s adverse wind

Fire vehicle

Entrance

Exit

Visibility (m)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

— 180 m tunnel, DGV fire

— Slice taken at 335 seconds (last occupant exits)
RESULTS SUMMARY

— Results are consistent with recent work by Purser, suggesting that occupants can move through visibilities of 2 m for 20-60 minutes

— Can use this quantitative approach to form a basis for approval by the authority having jurisdiction (AHJ)
SIMULATIONS

<table>
<thead>
<tr>
<th>Case number</th>
<th>Ventilation</th>
<th>Egress doors</th>
<th>FHRR (MW)</th>
<th>Tunnel length</th>
<th>Lanes</th>
<th>Max. FED, toxic gases</th>
<th>Max. FED, heat</th>
<th>Max. FIC</th>
<th>Pass/fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM-01-01</td>
<td>Natural</td>
<td>0</td>
<td>300</td>
<td>180</td>
<td>2</td>
<td>0.081</td>
<td>1.00</td>
<td>1.00</td>
<td>Fail</td>
</tr>
<tr>
<td>FEM-01-02</td>
<td>Mechanical</td>
<td>0</td>
<td>300</td>
<td>180</td>
<td>2</td>
<td>0.003</td>
<td>0.02</td>
<td>0.20</td>
<td>Pass</td>
</tr>
<tr>
<td>FEM-01-03</td>
<td>Natural</td>
<td>2</td>
<td>300</td>
<td>180</td>
<td>2</td>
<td>0.013</td>
<td>0.00</td>
<td>0.05</td>
<td>Pass</td>
</tr>
<tr>
<td>FEM-01-04</td>
<td>Natural</td>
<td>0</td>
<td>140</td>
<td>180</td>
<td>2</td>
<td>0.002</td>
<td>0.01</td>
<td>0.05</td>
<td>Pass</td>
</tr>
<tr>
<td>FEM-01-05</td>
<td>Mechanical</td>
<td>0</td>
<td>140</td>
<td>180</td>
<td>2</td>
<td>0.002</td>
<td>0.01</td>
<td>0.05</td>
<td>Pass</td>
</tr>
<tr>
<td>FEM-01-06</td>
<td>Natural</td>
<td>2</td>
<td>140</td>
<td>180</td>
<td>2</td>
<td>0.001</td>
<td>0.00</td>
<td>0.05</td>
<td>Pass</td>
</tr>
<tr>
<td>FEM-01-07</td>
<td>Natural</td>
<td>0</td>
<td>300</td>
<td>180</td>
<td>6</td>
<td>0.003</td>
<td>0.02</td>
<td>0.20</td>
<td>Pass</td>
</tr>
<tr>
<td>FEM-01-08</td>
<td>Mechanical</td>
<td>0</td>
<td>300</td>
<td>180</td>
<td>6</td>
<td>0.001</td>
<td>0.01</td>
<td>0.10</td>
<td>Pass</td>
</tr>
<tr>
<td>FEM-01-10</td>
<td>Natural</td>
<td>0</td>
<td>140</td>
<td>305</td>
<td>2</td>
<td>0.012</td>
<td>0.06</td>
<td>0.35</td>
<td>Fail</td>
</tr>
<tr>
<td>FEM-01-11</td>
<td>Mechanical</td>
<td>0</td>
<td>140</td>
<td>305</td>
<td>2</td>
<td>0.002</td>
<td>0.01</td>
<td>0.05</td>
<td>Pass</td>
</tr>
<tr>
<td>FEM-01-12</td>
<td>Natural</td>
<td>0</td>
<td>300</td>
<td>305</td>
<td>6</td>
<td>0.067</td>
<td>0.20</td>
<td>0.55</td>
<td>Fail</td>
</tr>
<tr>
<td>FEM-01-13</td>
<td>Mechanical</td>
<td>0</td>
<td>300</td>
<td>305</td>
<td>6</td>
<td>0.001</td>
<td>0.01</td>
<td>0.10</td>
<td>Pass</td>
</tr>
</tbody>
</table>