User Manual
PetraSim User Manual
Table of Contents

Disclaimer ... xii
Acknowledgements .. xiii

1. **Getting Started** .. 1
 - Welcome .. 1
 - Installation ... 1
 - Purchase PetraSim ... 1
 - Software Registration ... 1
 - Additional TOUGH Documentation ... 2
 - System Requirements .. 2
 - Contact Us ... 2

2. **Background** ... 3
 - Flow in Porous Media ... 3
 - Darcy’s Law for Single Phase Flow .. 3
 - Multi-Phase Flow .. 3
 - TOUGH Concepts ... 5
 - Components and Phases ... 5
 - Mass and Energy Balance .. 7
 - Spatial Discretization ... 8
 - Temporal Discretization ... 9
 - Equations of State .. 9
 - Selecting an EOS .. 9
 - Global Properties .. 11
 - Details for Each EOS .. 11

3. **PetraSim at a Glance** ... 12
 - Main Window .. 12
 - 3D Results View .. 13
 - Time History Results ... 14
 - Example Problems ... 14
 - PetraSim Tour (Five Spot) .. 15
 - Load the EOS1 five_spot sample model .. 15
 - Enable flux output ... 15
 - Run the simulation .. 16
 - View 3D simulation results ... 17
 - View cell time history data .. 18

4. **PetraSim Basics** .. 20
 - Work Flow in a Typical Analysis .. 20
 - Terminology .. 20
 - PetraSim Interface ... 21
 - 3D View .. 21
 - Navigation ... 21
 - View Mode ... 21
 - Colors .. 22
 - Selection .. 23
 - Show/Hide/Filter Objects ... 24
 - Tree View ... 25
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Working with Files</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>PetraSim Model File (SIM)</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>TOUGH Input File (DAT)</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Creating and Saving a New PetraSim Model</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Open a Saved PetraSim Model</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Contour Files</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>XYZ Files</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>DXF Files</td>
<td>30</td>
</tr>
<tr>
<td>6.</td>
<td>Conceptual Model</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Problem Boundary</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Defining boundary with a new model</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Defining boundary with the boundary editor</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Layers</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Defining the default layer with a new model</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Defining layers with the layer manager</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Regions</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Internal Boundaries</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Faults</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Cleaning Up the Model</td>
<td>43</td>
</tr>
<tr>
<td>7.</td>
<td>Solution Mesh</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Defining a Solution Mesh</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Setting Z Divisions</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Creating the solution mesh</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Editing Cells</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Enabled, Disabled, and Fixed State Cells</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Extra Cells</td>
<td>52</td>
</tr>
<tr>
<td>8.</td>
<td>Materials</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Relative Permeability</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Capillary Pressure</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Material Data</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Assigning Different Materials by Cell</td>
<td>59</td>
</tr>
<tr>
<td>9.</td>
<td>Boundary and Initial Conditions</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Initial Conditions</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Default Initial Conditions</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Layer and Regional Initial Conditions</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Cell Initial Conditions</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Loading Previous Results as Initial Conditions (Restart)</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Boundary Conditions</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Fixed Boundary Conditions</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Sources and Sinks</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Using Wells in PetraSim</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Time-Dependent Essential (Dirichlet) Boundary Conditions</td>
<td>67</td>
</tr>
<tr>
<td>10.</td>
<td>Solution and Output Controls</td>
<td>74</td>
</tr>
</tbody>
</table>
Convergence Problems ... 106
Licensing/Registration Problems ... 108
Contacting Technical Support ... 109
References ... 110
Index .. 112
Figures

Figure 1-1: Licensing and Activation dialog ... 2
Figure 2-1: Illustration of pendular (a) and funicular (b) saturation regime in the case of an idealized porous medium consisting of packed spheres (7) ... 4
Figure 2-2: Capillary Pressure ... 5
Figure 2-3: Capillary pressure using van Genuchten function 5
Figure 2-4: Single phase liquid initial conditions for EOS3 ... 6
Figure 2-5: Single phase gas initial conditions for EOS3 ... 6
Figure 2-6: Two phase initial conditions for EOS3 .. 7
Figure 2-7: States corresponding to the three initial condition options 7
Figure 2-8: States corresponding to the three initial condition options 7
Figure 2-9: Space discretization and geometry data in the integral finite difference method (from TOUGH2 User's Guide) ... 8
Figure 2-10: States corresponding to the three initial condition options 9
Figure 2-11: New Model dialog ... 10
Figure 2-12: Global Properties dialog ... 10
Figure 3-1: Main Window ... 12
Figure 3-2: 3D Results View ... 13
Figure 3-3: Time History Results .. 14
Figure 3-4: Opening the five spot model ... 15
Figure 3-5: Select fluxes and velocities output .. 16
Figure 3-6: Time step graph during simulation .. 17
Figure 3-7: Temperature contours and flow vectors ... 18
Figure 3-8: Cell time history ... 19
Figure 4-1: Boundary Mode ... 22
Figure 4-2: Layer Mode ... 22
Figure 4-3: Mesh Mode .. 22
Figure 4-4: Example background image ... 26
Figure 4-5: Example draped image ... 26
Figure 6-1: Examples of different model boundaries .. 31
Figure 6-2: Entering a boundary in the New Model dialog ... 32
Figure 6-3: Boundary editor ... 32
Figure 6-4: Quick Set Boundary dialog ... 33
Figure 6-5: Auto Size Boundary dialog ... 34
Figure 6-6: Auto Size Boundary combinations .. 34
Figure 6-7: Example of layers ... 35
Figure 6-8: Example of extending an input file boundary .. 36
Figure 6-9: Example of invalid layer divisions ... 36
Figure 6-10: Fixed layer divisions ... 37
Figure 6-11: Layer manager dialog ... 38
Figure 6-12: New Layer dialog ... 38
Figure 6-13: Example of layers split into multiple regions 39
Figure 6-14: Region properties dialog ... 40
Figure 6-15: Defining an internal boundary ... 40
Figure 6-16: The internal boundary shown in the model 41
Figure 6-17: Example of floating internal boundary 42
Figure 6-18: A cylindrical region defined using a DXF file 42
Figure 6-19: Selecting fault regions ... 43
Figure 6-20: Cleaning a conceptual model .. 44
Figure 7-1: Types of solution meshes ... 45
Figure 7-2: Example of a mesh conforming to the model layers 46
Figure 7-3: Creating custom layer D2 .. 47
Figure 7-4: The Create Mesh dialog showing regular parameters 47
Figure 7-5: Calculating cell size when the factor is not 1.0 48
Figure 7-6: Example of custom divisions for a regular mesh 48
Figure 7-7: Parameters for a polygonal mesh .. 49
Figure 7-8: Radial mesh representation in PetraSim 50
Figure 7-9: Parameters for a radial mesh ... 50
Figure 7-10: Editing a cell in the 3D View .. 51
Figure 7-11: Editing cell properties ... 52
Figure 7-12: Defining the basic extra cell properties 53
Figure 7-13: Defining the extra cell connections to the model 54
Figure 8-1: Material properties ... 56
Figure 8-2: Relative permeability functions ... 57
Figure 8-3: Capillary pressure functions .. 58
Figure 8-4: Miscellaneous material data .. 59
Figure 8-5: Assign Cell Materials dialog ... 60
Figure 9-1: Setting default initial conditions ... 61
Figure 9-2: Setting region initial conditions .. 62
Figure 9-3: Setting cell initial conditions .. 63
Figure 9-4: Defining a cell as a source/sink ... 65
Figure 9-5: Add Well dialog ... 66
Figure 9-6: Edit Well dialog .. 66
Figure 9-7: Well completion interval in 3D View 67
Figure 9-8: Desired boundary conditions ... 70
Figure 9-9: Graph of desired boundary conditions 71
Figure 9-10: Desired boundary conditions ... 71
Figure 9-11: Calculated heat flux .. 72
Figure 9-12: Calculated flow rates .. 72
Figure 9-13: Comparison of desired and calculated boundary condition temperatures ... 73
Figure 9-14: Comparison of desired and calculated boundary condition pressures in TOUGH2 73
List of Tables
Table 12.1: Data for connections to cell 169 ...94
Disclaimer

Thunderhead Engineering makes no warranty, expressed or implied, to users of PetraSim, and accepts no responsibility for its use. Users of PetraSim assume sole responsibility under Federal law for determining the appropriateness of its use in any particular application; for any conclusions drawn from the results of its use; and for any actions taken or not taken as a result of analyses performed using these tools.

Users are warned that PetraSim is intended for use only by those competent in the field of multi-phase, multi-component fluid flow in porous and fractured media. PetraSim is intended only to supplement the informed judgment of the qualified user. The software package is a computer model that may or may not have predictive capability when applied to a specific set of factual circumstances. Lack of accurate predictions by the model could lead to erroneous conclusions. All results should be evaluated by an informed user.

Throughout this document, the mention of computer hardware or commercial software does not constitute endorsement by Thunderhead Engineering, nor does it indicate that the products are necessarily those best suited for the intended purpose.
Acknowledgements

We thank Karsten Pruess, Tianfu Xu, George Moridis, Michael Kowalsky, Curt Oldenburg, and Stefan Finsterle in the Earth Sciences Division of Lawrence Berkeley National Laboratory for their gracious responses to our many questions. We also thank Ron Falta at Clemson University and Alfredo Battistelli at Aquater S.p.A., Italy, for their help with T2VOC and TMVOC. Without TOUGH2, T2VOC, TOUGHREACT, and TOUGH-Fx/HYDRATE, PetraSim would not exist.

In preparing this manual, we have liberally used descriptions from the user manuals for the TOUGH family of codes. Links to download the TOUGH manuals are given at http://www.petrasim.com. More information about the TOUGH family of codes can be found at: http://www.esd.lbl.gov/TOUGH2/. Printed copies of the user manuals may be obtained from Karsten Pruess at <K_Pruess@lbl.gov>.

The original development of PetraSim was funded by a Small Business Innovative Research grant from the U.S. Department of Energy. Additional funding was provided by a private consortium for the TOUGHREACT version and by the U.S. Department of Energy NETL for the TOUGH-Fx/HYDRATE version.

We most sincerely thank our users for their feedback and support.
1. Getting Started

Welcome
PetraSim is an interactive pre-processor and post-processor for the TOUGH family of codes. It helps users rapidly develop models and view results for these general purpose simulators which model nonisothermal flows of multicomponent, multiphase fluids in porous and fractured media. The T2VOC and TMVOC simulators include three-phase flows of water, air, and volatile organic chemicals. TOUGH2-MP is a multi-processor/multi-core version of TOUGH2. The TOUGHREACT simulator adds chemical reactions. The TOUGH-Fx/HYDRATE simulator includes the capability to represent methane hydrates.

Installation

You must install PetraSim with administrator privileges. If your current account is not an administrator account, use the Run as Administrator option on the right-click menu.

Purchase PetraSim
All PetraSim sales are handled by RockWare at http://www.rockware.com/. Our representative is Alison at alison@rockware.com.

Software Registration
When you purchase a license, you will receive a key that activates the software. You must enter this key in the Licensing and Activation dialog. To activate your license using Online Activation:

1. Start PetraSim. If the installation of PetraSim is not currently licensed, the Licensing and Activation dialog will automatically appear and you can skip to step 3.
2. On the Help menu, click License...
3. Select the Online Activation option.
4. Enter your Registration Key into the Key box shown in Figure 1-1.
5. Click the Activate button.
Getting Started

![Figure 1-1: Licensing and Activation dialog](image)

Additional TOUGH Documentation

In preparing this manual, we have liberally used descriptions from the user manuals for the TOUGH family of codes. Links to download the TOUGH manuals are given at http://www.petrasim.com. More information about the TOUGH family of codes can be found at: http://www-esd.lbl.gov/TOUGH2/. Printed copies of the user manuals may be obtained from Karsten Pruess at K_Pruess@lbl.gov.

System Requirements

PetraSim will run well on any newer computer. At a minimum, the processor should be at least as fast as a 1 GHz Pentium III, with at least 512 MB RAM. A graphics card that supports OpenGL 1.1 or later with 64 MB of graphics memory is recommended.

Contact Us

Thunderhead Engineering
403 Poyntz Avenue, Suite B
Manhattan, KS 66502-6081
USA

Product Support: support@thunderheadeng.com
Phone: +1.785.770.8511
Fax: +1.785.532.9102
2. Background

Flow in Porous Media
This section will provide only the briefest overview of the basic assumptions used in the TOUGH family of codes. The reader is referred to the TOUGH2 User's Guide (1), the T2VOC User's Guide (2), the TMVOC User's Guide (3), the TOUGHREACT User's Guide (4), and the TOUGH-Fx/HYDRATE User's Guide (5) for detailed information on the TOUGH codes.

A good fundamental reference on flow in porous media is The Physics of Flow Through Porous Media (6).

Darcy's Law for Single Phase Flow
The TOUGH family of codes (and thus PetraSim) simulates flow in porous media. A basic assumption is that the flow is described by Darcy's law,

\[\mathbf{u} = -\frac{k}{\mu} (\nabla p - \rho \mathbf{g}) \]

where \(\mathbf{u} \) is the seepage velocity vector, \(k \) is the total permeability, \(\mu \) the viscosity, \(p \) the pressure, \(\rho \) the density, and \(\mathbf{g} \) is the gravity vector.

Multi-Phase Flow
As described by Scheidegger (6), when two (or more) immiscible fluids or phases exist simultaneously in a porous medium one phase will generally wet the solid. There are in general three saturation regimes:

- Saturation regime: The porous medium is completely saturated with one phase.
- Pendular regime: The porous medium has the lowest possible saturation with one phase. This phase occurs in the form of pendular bodies throughout the porous medium. These pendular bodies do not touch each other so that there is no possibility of flow for that phase; see Figure 2-1 (a).
- Fenicular regime: The porous medium exhibits an intermediate saturation with both phases. If the pendular bodies of the pendular regime expand through addition of the corresponding fluid, they eventually become so large that they touch each other and merge. The result is a continuous network of both phases across the porous medium. It is thus possible that simultaneous flow of both phases occurs along tortuous paths; see Figure 2-1 (b).
For multi-phase flow, Darcy's law is modified to introduce the concept of relative permeability:

\[u_\beta = -k \frac{k_{r\beta}}{\mu_\beta} (\nabla p_\beta - \rho_\beta g) \]

where \(\beta \) indicates the phase, \(k_{r\beta} \) is the relative permeability (between 0 and 1) for the phase, and

\[p_\beta = p + p_{c\beta} \]

is the fluid pressure in the phase, which is the sum of the pressure in a reference phase (usually the gas phase) and the capillary pressure \(p_{c\beta} \) (capillary pressure is negative).

Relative Permeability

The TOUGH codes provide several options for relative permeability. A typical option is the use of Corey's curves (8) as illustrated in Figure 2-2. At low liquid saturation, the gas relative permeability is 1.0 and the liquid permeability is very low. Conversely, at high liquid saturation the gas relative permeability is very low and the liquid permeability is 1.0. This is consistent with the flow regimes as described above.
Figure 2-2: Capillary Pressure

Capillary Pressure

The TOUGH codes also provide several options for capillary pressure. A typical option is the van Genuchten function (9) as illustrated in Figure 2-3. At low liquid saturation, the capillary pressure is large, but rapidly becomes smaller as liquid saturation increases.

Figure 2-3: Capillary pressure using van Genuchten function

TOUGH Concepts

Components and Phases

A clear understanding of the terms component and phase is necessary when using the TOUGH codes. Consider a system consisting of water and air (implemented as EOS3 in TOUGH2). This system consists of two components (water and air) and will have two phases (liquid and gas). Note that TOUGH2 does
not include a solid phase, which would consist of ice; TOUGH-Fx/HYDRATE does include ice as a solid phase.

Importantly, the two components (water and air) can be present in both phases. The liquid phase can consist of liquid water and dissolved air. Similarly, the gaseous phase can be comprised of gaseous air and water vapor.

For single phase conditions, the thermodynamic state is defined by pressure, temperature, and air mass fraction. If the single phase is liquid, then the air mass fraction will be the air dissolved in the water, which is a small value. An example of a valid initial condition specification for single phase liquid is shown in Figure 2-4, with pressure of 1.0E5 Pa, temperature of 20 C, and a small air mass fraction of 1.0E-5. This small amount of air will be dissolved in the water.

If the single phase is gas, the gas can consist of both water vapor and air. The air mass fraction can be as large as 1. A valid initial condition specification for single phase gas is given in Figure 2-5 with pressure of 1.0E5 Pa, temperature of 20 C, and air mass fraction of 0.999. This means that a small amount of the gas will consist of water vapor.

For two phase conditions, the thermodynamic state is defined by gas phase pressure, gas saturation, and temperature. An example of a two phase initial condition is given in Figure 2-6, with pressure of 1.0E5 Pa, temperature of 20 C, and gas saturation of 0.5.
As an example, a single element with a volume of 1 cubic meter and 0.1 porosity was run using the initial conditions given above. The resulting solution and mass fractions for each component are given below, in Figure 2-7 and Figure 2-8. The two phase solution is of particular interest since this case provides the saturation conditions for water vapor in the gas phase and dissolved air in the liquid phase. The reader is encouraged to use single element problems when starting to use a new equation of state (EOS).

In TOUGH2, all water properties are represented by the steam table equations as given by the International Formulation Committee (10). Air is approximated as an ideal gas, and additivity is assumed for air and vapor partial pressures in the gas phase. The viscosity of air-vapor mixtures is computed from a formulation give by Hirshfelder et al. (11). The solubility of air in liquid water is represented by Henry's law.

Because of the detailed physics that are included in the TOUGH codes, setting of multi-phase initial conditions requires detailed understanding of the problem. For help in setting mixture conditions, the user may refer to a thermodynamics text, such as (12).

Mass and Energy Balance

As described in the TOUGH2 manual, the basic mass and energy balance equations solved by TOUGH2 can be written in the general form:

\[
\frac{d}{dt} \int_{V_n} M^K \, dV_n = \int_{\Gamma_n} F^K \cdot \mathbf{n} \, d\Gamma_n + \int_{V_n} q^K \, dV_n
\]
Background

The integration is over an arbitrary subdomain V_n of the flow system under study, which is bounded by the closed surface Γ_n. The quantity M appearing in the accumulation term (left hand side) represents mass or energy per volume, with K labeling the mass components and an extra heat “component” if the analysis is nonisothermal. F denotes mass or heat flux and q denotes sinks and sources. n is a normal vector on surface element $d\Gamma_n$, pointing inward to V_n.

The user should consult Appendix A of the TOUGH2 User’s Guide (1) for a further discussion of this topic.

Spatial Discretization

As described in the TOUGH2 User’s Manual, the continuum equations are discretized in space using the integral finite difference method (IFD), (13) and (14). Introducing appropriate volume averages, we have

$$\int_{V_n} M dV = V_n M_n$$

where M is a volume-normalized extensive quantity, and M_n is the average value of M over V_n. Surface integrals are approximated as a discrete sum of averages over surface segments A_{nm}:

$$\int_{\Gamma_n} F^K \cdot n d\Gamma_n = \sum_{m} A_{nm} F_{nm}$$

Here F_{nm} is the average value of the (inward) normal component of F over the surface segment A_{nm} between volume elements V_n and V_m. The discretization approach used in the integral finite difference method and the definition of the geometric parameters are illustrated in Figure 2-9.

![Figure 2-9: Space discretization and geometry data in the integral finite difference method (from TOUGH2 User’s Guide)](image)

The discretized flux is expressed in terms of averages over parameters for elements V_n and V_m. For the basic Darcy flux term, we have

$$F_{\beta nm} = -k_{nm} \left[\frac{k_{r\beta} \rho_{\beta}}{\mu_{\beta}} \right]_{nm} \left[P_{\beta,n} - P_{\beta,m} \right] \frac{D_{nm}}{D_{nm}} - \rho_{\beta,nm} g_{nm}$$

Where the subscripts (nm) denote a suitable averaging at the interface between grid blocks n and m (interpolation, harmonic weighting, upstream weighting). $D_{nm} = D_n + D_m$ is the distance between the
Background

nodal points \(n \) and \(m \), and \(g_{nm} \) is the component of gravitational acceleration in the direction from \(m \) to \(n \).

The user should consult Appendix B of the TOUGH2 User’s Guide (1) for a further discussion of this topic.

Temporal Discretization

Substituting the volume averaged quantities and surface integral approximations into the mass and energy balance, a set of first-order ordinary differential equations in time is obtained.

\[
\frac{dM^K_n}{dt} = \frac{1}{V_n} \sum_m A_{nm} f^K_{nm} + q^K_n
\]

Time is discretized as a first order finite difference, and the flux and sink and source terms on the right-hand side are evaluated at the new time, to obtain the numerical stability needed for an efficient calculation of multiphase flow.

The user should consult Appendix B of the TOUGH2 User’s Guide (1) for a further discussion of this topic.

Equations of State

As described in the TOUGH2 User’s Guide, the thermophysical properties of fluid mixtures needed for assembling the governing mass- and energy-balance equations are provided by "equation-of-state" (EOS) modules. Each EOS uses a different set of primary variables (such as pressure, temperature, and mass fractions) to define each possible phase condition.

PetraSim supports the following EOS options in TOUGH2 (Figure 2-10). PetraSim also supports TOUGHREACT, TMVOC, and TOUGH-Fx/HYDRATE.

<table>
<thead>
<tr>
<th>EOS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Water, water with tracer</td>
</tr>
<tr>
<td>2</td>
<td>Water and CO₂</td>
</tr>
<tr>
<td>3</td>
<td>Water and air</td>
</tr>
<tr>
<td>4</td>
<td>Water and hydrogen</td>
</tr>
<tr>
<td>5</td>
<td>Water and air</td>
</tr>
<tr>
<td>6</td>
<td>Water, brine, and air</td>
</tr>
<tr>
<td>7R</td>
<td>Water, brine, two radionuclides, and air</td>
</tr>
<tr>
<td>9</td>
<td>Saturated-unsaturated flow (used for vadose zone)</td>
</tr>
<tr>
<td>EWWSG</td>
<td>Water, NaCl, non-condensible gas</td>
</tr>
<tr>
<td>ECO₂</td>
<td>Water, brine, and CO₂ for sequestration studies</td>
</tr>
</tbody>
</table>

Figure 2-10: States corresponding to the three initial condition options

Selecting an EOS

There can be only one EOS in an analysis at a time. The EOS can be specified when creating a new model or changed while working on the model.

To specify the EOS when creating a new model, select **File->New….** The **New Model** dialog will appear, as shown in Figure 2-11. First select the desired simulator mode on the left. Depending on the mode chosen, different EOS options will be enabled on the right. Select the desired EOS on the right and then click **OK** to create the new model with the chosen EOS.
To change the EOS while working on a model, from the **Properties** menu choose **Global Properties**.

Click **Change EOS...** as shown in Figure 2-12.

NOTE: While it is possible to change the EOS while working on a model, this is discouraged. PetraSim does not have a reliable way to re-interpret state variable information. For example, consider a model where you are using EOS1 and have set the default initial condition to be two-phase (Pg, Sg, X), then you change EOS to EOS7R [which contains more state variables, e.g. single-phase (P, Xb, Xrn1, Xrn2, Xair, T)].

Rather than attempt to guess the user's intent, PetraSim behaves defensively. Initial conditions will be set to single-phase mode and some primary variable values will be carried over. In this case gas-phase
pressure will be copied into the value for pressure and the tracer mass fraction will be copied over to the brine mass fraction. All other values will be the defaults. With the exception of pressure and temperature, this mapping is entirely dependent on the internal numbering of the state variables and does not necessarily follow a particular pattern. After changing EOS, you should always re-check any EOS-related settings.

Global Properties
Each EOS has different options that define the assumptions used in the analysis. For EOS3, this includes whether to include heat transfer (isothermal or non-isothermal) and whether to include molecular diffusion. These options are selected by selecting Properties->Global Preferences... or on the toolbar. On the EOS tab all available options will be displayed.

Details for Each EOS
The user is referred to the TOUGH2 User’s Guide (1) for detailed descriptions of the options available for each EOS.
3. PetraSim at a Glance

Main Window
The main window contains a 3D design view of the model (3D Model View) which can be used to visualize and edit simulator input.

1. **Navigation Tree** – Use this to quickly identify and manage items in your model.
2. **View** – Click to reset the 3D Model View to top, front, or side views.
3. **3D Model View** – Use this to visualize and interact with the structure of your model in 3D. This view is also used to edit mesh cells.
4. **Toolbar** – The toolbar provides quick access to the steps required to define, run, and post-process an analysis.
5. **View Mode** – Use this to switch between viewing the conceptual model with layer sides on or off or viewing the solution mesh. This is also used to color regions or cells by different properties.

Figure 3-1: Main Window
6. **3D Labels** - Add 3D labels to help keep track of model features. Labels are added automatically when you add wells and when you create a model.

7. **Find** – Use this to find cells by name or id.

8. **Axis Legend** – To ensure that you never become disoriented, the axis legend rotates with your model and always displays the x, y, and z axes.

9. **Cell Count** – Use the cell count display to see how many cells are in your model.

10. **Simulator** – Display the current simulator and EOS.

3D Results View

You can use the 3D Results View to visualize properties of your model as they evolved over time.

![Figure 3-2: 3D Results View](image)

1. **3D Results Display** – Contours, vectors, and slice planes are shown against an outline of your model. You can also make high-resolution screen shots for publications or presentation graphics.

2. **Scalar Legend** – The scalar legend shows what colors were used to display scalar quantities. You can also double-click the legend to define the range and number of colors.

3. **Time List** – Click a time step to view the results data at that time during the simulation.
4. **Scalar Property** – Select a scalar property, such as temperature or pressure, to display from this list. All slice planes and contours will be updated to show the new property.

5. **Vector Property** – Select a vector property (such as water flow rate) to display from this list. All vectors will be updated to show the new property.

6. **Isosurface Controls** – Change the number of isosurfaces and other scalar display properties.

7. **Vector Controls** – Use sliders to scale the vectors in the 3D view.

8. **Slice Planes** – Click this to add 2D slice planes to the 3D view.

Time History Results
You can make time history plots of individual cell data and export the data in a format for import into spreadsheets.

![Figure 3-3: Time History Results](image)

1. **Time History Results** – You can plot output data for any cell.

2. **Output Variable** – Select the output variable for plotting.

3. **Cell Selection** – Plots can be made for any cell. Named cells display the name and the cell number.

4. **Line Style** – Select the style for the graph.

Example Problems
Examples problems for loading in PetraSim can be downloaded from the web at http://www.petrasim.com under the **Support** link.
PetraSim Tour (Five Spot)
This section is a (very) quick walkthrough for one of the sample problems included with TOUGH2. The problem specification is not discussed. You can just load the data, run the simulator, and look at the results. When you are ready, follow the steps below.

Load the EOS1 five_spot sample model
2. Extract the zip file to the desired directory.
3. Start PetraSim.
4. Under the File menu, click Open....
5. Choose five_spot.sim from the extracted location, and then click Open.

Enable flux output
1. On the Analysis menu, click Output Controls...
2. Click to select Fluxes and Velocities
3. Click OK
Run the simulation

To run the simulation: On the **Analysis** menu, click **Run TOUGH2**.

The **Running TOUGH2** dialog will open and show how the simulation is progressing. The graph displays simulation time steps on the X-axis and the log10 of the time step on the Y-axis. As a rule of thumb, an increasing Y value is a good sign of simulation progress. If your time steps start to become smaller, it may indicate that the simulator is having a difficult time converging.

When the simulation finishes (approx 10 seconds), a message will be displayed and the Cancel button will turn into a Close button. Click the **Close** button.
View 3D simulation results

To view 3D simulation results: On the Results menu, click 3D Results....

Since this example problem is a 2D problem, it might be useful to add a scaling factor to the Z-axis. To scale an axis in the 3D Results:

1. On the View menu, click Scale...
2. In the Z-Factor box, type 0.01
3. Click OK

The image below shows contour data for temperature and vectors for heat flow at the end of the simulation. When you are finished looking at the 3D results, close the 3D Results dialog and return to the PetraSim main window.
Figure 3-7: Temperature contours and flow vectors

View cell time history data
To open the cell time history view: On the Results menu, click Cell History Plots.

If you ask for additional time history data for some of your cells, they will appear in bold in the cell list. In this example, the injection and production cells were marked for additional output. These cells will have a data point for each time step of the simulation. You can view the time history of the rest of your cells by selecting the Show All option in the View menu.
Figure 3-8: Cell time history
4. PetraSim Basics

Work Flow in a Typical Analysis

Many problems will be run in two stages: (1) an analysis that establishes a steady state initial condition, and (2) an analysis that loads the steady state results as an initial condition and then proceeds with a transient disturbance, such as a spill or production from a reservoir. PetraSim makes it easy to load the results of a previous analysis as the starting condition of a new analysis.

The PetraSim interface helps guide the user through the steps of an analysis. These include:

- Selecting an EOS.
- Defining the problem boundaries, creating a conceptual model, and creating a mesh.
- Selecting the global options to be used in the analysis.
- Specifying the material properties.
- Defining the default initial conditions for the model, either directly or by loading the results of a previous analysis.
- Defining cell-specific data, such as material, sources, sinks, and initial conditions.
- Setting the solution and output options.
- Solving the problem.
- Post-processing of results using contour and time history plots.

The user must recognize that this process is seldom linear. It will likely be necessary to iterate as new understanding of the model and physics is obtained. New users are especially tempted to immediately proceed with a complex model. Don't do this! It is always recommended that the user perform 1D and 2D analyses before a 3D analysis.

A suite of examples taken from the TOUGH user guides is available at http://www.petrasim.com/.

Terminology

PetraSim divides the problem space into two sections. There is a Conceptual Model and a Solution Mesh. The Conceptual Model defines all the high-level features of the model, such as a model boundary, geologic layers, internal boundaries, and regions. The Solution Mesh defines cells and connections that divide the conceptual model into pieces for the TOUGH simulator. The conceptual model and solution mesh are further discussed in the topics, Conceptual Model and Solution Mesh.

- **Boundary** – this defines a 2D path around the problem space that limits the X,Y coordinates in the model.
- **Layers** – these define the stratification of the problem space.
- **Internal boundaries** – define surfaces that split the layers into sub-regions.
- **Regions** – sub-regions that result when a layer is split by an internal boundary. Each region can have its own set of properties parented by the layer’s properties.
PetraSim Basics

- **Cell** – a piece of the solution mesh that tries to conform to a portion of the conceptual model. Each cell has its own properties, such as initial conditions, sources/sinks, etc.

PetraSim Interface

PetraSim uses multiple views to display the model and results:

- **3D View.** Used to rapidly view the model, including internal boundaries and wells and define cell-specific parameters including sources and sinks and initial conditions.
- **Tree View.** Used to display and select regions in the model, materials, wells, and extra cells.
- **3D Plots.** Used to display isosurfaces and contour plots of results.
- **Time History Plots.** Used to display detailed cell results as a function of time.

3D View

Navigation
To navigate using the 3D model use the navigation toolbar:

- To **spin** the 3D model, select the **Orbit Tool** (orbit) and left-click and hold on the model and move the mouse. The model will spin as though you have selected a point on a sphere.
- To **zoom**, hold the **Alt** key and drag the mouse vertically with the **Orbit Tool** or use the **Zoom Tool**.
- To zoom to a window, use the **Zoom Box Tool** (zoom).
- To **move** the model, hold the **Shift** key and drag to reposition the model in the window using the **Orbit Tool** or use the **Pan Tool**.
- To **reset** the model, type "r" or click **Reset View**.
- To change to a standard view, select for a **top** view, for a **front** view, and for a **side** view.
- To go through the view history, use and .

View Mode
PetraSim provides three modes for viewing the model that can be selected through the **View Mode Toolbar**:

- **Boundary Mode:** This mode shows the conceptual model with the layer sides visible as shown in Figure 4-1. Regions and layers can be selected and edited in this mode.
- **Layer Mode:** This mode shows only the conceptual model with the layer sides invisible as shown in Figure 4-2. Like the **Boundary Mode**, this mode allows regions and layers to be selected and edited.
- **Mesh Mode:** This mode shows only the solution mesh and internal boundaries and allows cells to be selected and edited, Figure 4-3.
Colors
Depending on the current View Mode, visible elements can be colored by various properties using the Cell Color option:
PetraSim Basics

- **By Layer** – The visible cells or regions are colored by the layer to which they belong. The layer color is specified in the **Edit Layers** dialog as discussed in Defining layers with the layer manager.
- **Color Scheme** – All cells or regions are colored by the current color scheme, which can be changed under **View–Color Scheme**.
- **Material** – The cells or regions are colored by their currently set material. The material color is set in the **Edit Materials** dialog as discussed in Materials.
- **Print Flags** (only available in **Mesh Mode**) – If a cell has print flags set, the cell will be colored red, otherwise grey.
- **Fixed State** (only available in **Mesh Mode**) – If a cell is marked as Fixed State, the cell will be colored red.
- **Source/Sink** (only available in **Mesh Mode**) – If a cell is marked as a Source or Sink, the cell will be colored red.
- **All others** – All other properties come from the boundary conditions and material values for the element and are displayed with a color legend. If the property is inapplicable for a particular element, the element will be colored grey.

Selection

Selection in PetraSim allows actions to be performed on specific objects in the model. Selection can be performed in either the **Tree View** or the **3D View**. Once an object is selected, actions can be performed on it through the **Edit** menu or right-click context menu.

In the **3D View**, selection can be performed with the **Orbit Tool** (_UtilOrbitTool_) or **Selection Tool** (_UtilSelectionTool_). Single-clicking an item in the **3D View** will select one item and Ctrl-clicking will select multiple items. With the **Selection Tool**, multiple items can be selected by left-clicking and dragging a box around the desired items. This selection box will select all items in the box and will penetrate through the model.

Additional items can be selected by holding the Alt and Shift modifier keys while clicking the desired objects. The additional items that are selected depend on the current **View Mode**.

Selecting Regions and Layers

Selecting regions and layers in the **3D View** can only be performed when either the **Boundary Mode** or **Layer Mode** is active as discussed in View Mode. In either of these modes, the default selection action will select regions. If the owning layer should be selected instead, hold Alt while selecting the region.

Selecting Cells

Selecting cells in the **3D View** must be performed in the **Mesh Mode** (_UtilSelectMeshLayerTool_) as discussed in the View Mode section. When using the **Orbit Tool** or **Selection Tool**, the default selection action will select individual cells. Holding Alt while selecting will select an entire layer of cells. Holding Shift while selecting will select an entire column of cells. Alternatively, selecting an entire layer or column can be done with the **Select Mesh Layer Tool** (_UtilSelectMeshLayerTool_) and **Select Mesh Column Tool** (_UtilSelectMeshColumnTool_), respectively.
For some concept-level objects, such as layers, regions, and wells, the cells that belong to that object may be selected all at once. To do so, select the layer, region, or well from the 3D View or Tree View, right click it, and from the context menu select “Select Cells.”

Show/Hide/Filter Objects
PetraSim provides a variety of ways of limiting the currently visible objects. Some objects can be shown/hidden by classification, such as showing/hiding all wells or internal boundaries. Others can be shown/hidden several at a time, such as cells.

The following classes of objects can be shown or hidden with one of the buttons on the Filter Toolbar:

- Shows/Hides all wells
- Shows/Hides all background images and textures
- Shows/Hides all internal boundaries
- Shows/Hides all disabled cells

Show/Hide/Filter Cells
When in the Mesh Mode (mesh) cells can be hidden to reveal inner portions of the mesh. There are several ways to show and hide cells, some of which are chosen from the Mesh Toolbar:

- Show only a subset of cells (filter) – select the cells that should be visible and either select the Filter button (▼) from the Mesh Toolbar or right-click the selection and select “Show Only Selected Cells.”
- Show all cells – select the Show All Cells button (▲) from the Mesh Toolbar or right-click in any view and from the context menu select “Show All Cells.”
- Show cells in only one mesh layer – the ▲ and ◄ buttons in the Mesh Toolbar show only one layer of cells at a time. ▲ will move the visibility to the next layer up from the current visible layer. ◄ will move visibility to the next layer down. If any cells are selected when using these buttons, the buttons will maintain the selection in the cell column.
- Hide individual cells - select the desired cells, right-click the selection, and then from the context menu select “Hide Cells.”
- Hide all cells above a mesh layer – select a cell on the layer that should be visible, right-click it, and from the context menu select “Hide Cells Above.” This will leave the selected cell and all on its layer and below visible and hide the rest.
Tree View
The Tree View (on the left of the 3D window) is used to display, select, and edit layers, regions, internal boundaries, materials, wells, and cells. Expand the list and then double-click on an object to edit its properties or right-click to show an additional context menu.

- Layers – Lists all layers in the model. Under each layer are all the sub-regions in that layer. Both layers and layer sub-regions can be edited by double-clicking the layer or region.
- Internal Boundaries – Lists all internal boundaries in the model.
- Materials – Lists all materials in the model.
- Wells – Lists all wells in the model.
- Named/Print Cells – Lists all cells that have either been given a name or been marked as a print cell.
- Extra Cells – Lists all extra cells that have been defined in the model.

Units
All input uses metric (SI) units, such as meters, seconds, kilograms, degrees C, and the corresponding derived units, such as Newton, Joules, and Pascal for pressure. In some dialogs, the unit may be entered using a different scale. For instance, in the Solution Controls dialog, the time quantities may be entered in seconds, days, or years by following the number with the appropriate abbreviation.

Displaying a Surface Image on the Model
It is possible to display a surface image on the model. This can be useful to help relate underground features with the surface image or to enhance the visual display. There are two ways to specify an image. One is as a floating background image that can exist at any Z location and the other is to drape an image over the terrain of the top layer.

Floating Background Image
A floating background image is a flat image that can be specified at any Z location and with transparency. This type of image is useful for orienting underground features. To specify this type of image:

1. Save the image file (.bmp, .gif, .jpg, .jpeg, .png).
2. On the View menu, click Background Image...
3. In the Background Image Dialog, click the file selection icon, and select the image file.
4. The Origin defines the position of the lower left corner of the image in the model coordinates.
5. The Extent defines the length of the image in the model coordinates.
6. The Z-Cooord defines the position of the image in the Z direction.
7. The Transparency slider defines the amount of transparency used to display the image. Move the slider to the left to minimize transparency.

An example surface image is shown in Figure 4-4.
Draped Image
A draped image appears as a texture on the top of the terrain as shown in Figure 4-5. It conforms to the terrain on the top layer of the model and can be viewed in any View Mode. When viewed in Mesh Mode it is draped on the top layer of visible cells. To add a draped (top) image: on the Model menu, click Set Top Image.

User-Defined Labels
It is possible to add labels to the model in addition to those automatically created by the boundary and wells. To define labels
1. On the **Model** menu, click **Labels**...
2. In the **Labels** dialog, add the **X**, **Y**, and **Z** coordinate data and **Name** text for each label.
3. Each label will now be displayed in the **3D View**. You can control the display of the labels in the **View** menu.
5. Working with Files

Several files are used when performing an analysis using PetraSim. These include the PetraSim model file, the TOUGH input file, and TOUGH output files. It is important to understand the differences between these files to take full advantage of PetraSim's features.

PetraSim Model File (SIM)
The PetraSim model file (SIM) is a binary file that represents a PetraSim model. The SIM file contains all information needed to write a TOUGH input file.

The SIM file can be used to save the model and share with other PetraSim users.

TOUGH Input File (DAT)
Execution of TOUGH is integrated into PetraSim. Before PetraSim executes TOUGH, a TOUGH input file (DAT) is automatically written. This file is then read by the TOUGH executable. The TOUGH input file contains all information needed for a TOUGH analysis. The DAT file is an ASCII text format file.

Most PetraSim users will never need to explicitly create or edit the TOUGH input file. In special cases, such as when a user has developed a special version of TOUGH, the user may need to edit the TOUGH input file before an analysis. In this case, PetraSim provides the option to export this file File/Export/TOUGH File...) for manual editing. For more information on the TOUGH files written during an analysis, see the Restart section in this document.

PetraSim users should not use the DAT file to share models, since this file does not contain information needed to reconstruct a model in PetraSim.

Creating and Saving a New PetraSim Model
When PetraSim is started, it begins with an empty model. The user can immediately begin work on a new model. If another model has already been opened, select File->New... to clear the current model and start a new empty model. PetraSim always has one (and only one) active model.

To save the new model, select File->Save... and give the file name. Because the files written by TOUGH have a fixed name, it is recommended that the user create a new directory for each model. If this is not done, the TOUGH results from a first analysis will lost when a second model is run, even if the PetraSim model has a different name.

Open a Saved PetraSim Model
To open a saved model, select File->Open... and select the file. To speed model selection, a list of recently opened files is available under File->Recent PetraSim Files....

Contour Files
Externally generated contour data can be used to define 3D initial conditions, the geometry of layer divisions for the conceptual model, or internal boundaries.
The format of the contour file is given below. The contour data can be viewed as a set of planes on which contours are defined. The planes can be defined at several depths in the model, forming a complete 3D definition of the data. Linear interpolation is performed in the Z direction between the contour planes.

The data consists of the depth (Z coordinate) followed by a definition of contours at that depth. In the following example, the "!" and following comments are included only for description. These should not be included in an actual file.

```
Define top of reservoir  ! The first line is a description
<top origin>             ! Include this line (not used at this time)
<depth>                  ! Keyword to indicate beginning of a contour set
  0.                     ! The Z coordinate for this contour set
<contour>                ! Keyword to define a contour at the given depth
  0.  1                   ! Value of contour followed by number of points
-1000.  1000.            ! X and Y coordinates of the point(s)
<contour>                ! Start of a new contour
  200.  3                 ! Value (200.0) and number of points (3)
  100.  1000.            ! X and Y coordinates of the point(s)
  -300.  800.            ! X and Y coordinates of the point(s)
-1000.  200.            ! X and Y coordinates of the point(s)
<contour>                ! Complete the contours at this depth.
  100.  4
  200.  1000.
  0.  600.
-400.  200.
-800.  0.
<contour>                ! Repeat <depth> and <contour> data
  0.  4
  400.  1000.
  200.  600.
-200.  200.
-600.  0.
<contour>                ! Repeat <depth> and <contour> data
  0.  2
  1000.  0.
  1000.  1000.
```

XYZ Files

XYZ files may be used to define the geometry of layer divisions and internal boundaries as discussed in the topic, Conceptual Model.

The XYZ file format consists of a list of XYZ points. PetraSim triangulates these points to form a surface. Following is a typical file.

```
-1000.  1000.  -500.
-100.  1000.  -300.
-300.  800.  -300.
-1000.  200.  -300.
  200.  1000.  -400.
  0.  600.  -400.
-400.  200.  -400.
-800.  0.  -400.
  400.  1000.  -500.
  200.  600.  -500.
-600.  0.  -500.
```
DXF Files
PetraSim contains limited support for DXFs to define layer divisions and internal boundaries as discussed in the topic, Conceptual Model.

The DXF file is limited to 3DFACE entities and Polyface meshes. These must be the top objects in the hierarchy, not embedded in blocks. If you have further questions, please contact Thunderhead Engineering.
6. Conceptual Model
The conceptual model defines the high-level features of the model. These are detailed descriptions of entities as they exist in the world, including a problem boundary, geologic layers, regions, and internal boundaries. The conceptual model is independent of the solution mesh and is used to generate the solution mesh as discussed in the topic, Solution Mesh.

Problem Boundary
The problem-space is limited in scope by defining a problem boundary. This is a 2D polygon that can be thought of as cutting a section out of the earth. The boundary polygon may be any shape, concave or convex, as long as it does not self-intersect. Some examples of boundaries are shown in Figure 6-1.

![Figure 6-1: Examples of different model boundaries](image)

The model boundary may be defined at any time, but it is preferable to define it either when starting to build the model or just after creating the layers. There are two ways to define the boundary. It can either be done when creating a new model or with the Boundary Editor.

Defining boundary with a new model
To define the boundary as part of a new model, select File->New to create the new model. The New Model dialog is shown as in Figure 6-2. A rectangular boundary can be specified in this dialog by entering the X Min, X Max, Y Min, and Y Max.
Defining boundary with the boundary editor

To edit the boundary once a model has been created, open the Boundary Editor dialog by going to the Model menu and choosing Edit Boundary… (). The Boundary Editor dialog is shown in Figure 6-3.

This dialog shows an overhead view of the model along with the current boundary path. An existing point on the path can be edited either by clicking and dragging the point with the left mouse button or right-clicking a point and selecting “Edit...” from the context menu to set the point to a specific
coordinate. A point can be added to the boundary by clicking on one of the edges. The point will be added at the set point. Existing points can also be deleted by right-clicking the point and selecting “Delete” from the context menu.

There are also several ways to create the boundary from scratch using the toolbar:

- **From a file** – Select this option to use an XY input file to create the boundary. This input file is similar to XYZ files discussed in the topic, XYZ Files. The main difference is that the XY file doesn’t require a Z coordinate and must specify the coordinates in the proper order to form a polygon describing the boundary.
- **Quick Set Min/Max** – Select this to create a boundary that is an axis-aligned box using min/max x and y bounds as shown in Figure 6-4.
- **Auto Size to Layers** – Select this option to automatically create a boundary from the current layers if their divisions were generated from input files, such XYZ, Contour, or DXF files. Because the geometry in the input files may make different shapes or may not overlap in coordinates, another dialog will ask how to generate the resulting boundary as shown in Figure 6-5.
 - If the **Bounding Box** option is chosen for shape, the resulting boundary will be an axis-aligned box that fits the outer points of the input files.
 - **Convex Hull** will make the boundary a convex polygon that fits the points in the input files. This option is only relevant if the input points were not specified as a rectangular array of points in the input file.
 - The input for the shape is determined by combining the geometry from the different layer divisions in the model. The geometry can either be a **Union** of the shapes or an **Intersection**.
 - Different combinations of shape and layer-combining are shown in Figure 6-6.

![Figure 6-4: Quick Set Boundary dialog](image)
Layers

Layers can be used to describe the stratigraphy of the model. Layers are horizontal regions that are stacked on top of each other in the Z direction. A model can be composed of any number of layers, each having its own set of properties, including name, material, color, number of divisions in the solution.
mesh, and initial conditions. Figure 6-7 shows several layers within one model. As can be seen in the figure, a layer does not have to extend to the boundary.

![Figure 6-7: Example of layers](image)

In PetraSim, layers are defined by the geometric surfaces, or divisions, between each layer. Each division may be created by using a constant Z value, a planar function, or an input file for more complex surfaces. There will always be one division more than there are layers in the model. This extra division is used to define the top of the model. In Figure 6-7 it can be seen in the left image that there are four layers and in the right image there are five divisions defining the layers. PetraSim always associates the top two divisions with the top layer, and each subsequent layer is defined only by its lower division (each subsequent layer’s upper division is implicitly defined by the next higher layer’s lower division). The colors of the divisions in Figure 6-7 (right) demonstrate which division is associated with which layer.

The following guidelines are strongly suggested for layer divisions:

- Layer divisions should extend to the boundary of the model. If an input file does not do so, PetraSim will automatically extend the geometry to the boundary in the X,Y direction as shown in Figure 6-8. This may result in unintended geometric artifacts.
- Layer divisions are allowed to touch along areas, pinching the layer, but they should not cross within the model boundary. While PetraSim does not enforce this rule, it is best practice to make sure this rule is followed since it reduces ambiguities in determining the order of the layers along the Z direction. An example of invalid divisions is shown in Figure 6-9. PetraSim cannot reliably determine which layer should be the top, middle, and bottom. The model in this image could be fixed by changing the boundary to only include the portion of the model to the left or right of the divisions’ intersection as shown in Figure 6-10.
Conceptual Model

Figure 6-8: Example of extending an input file boundary

Figure 6-9: Example of invalid layer divisions
In PetraSim, there must always be at least one layer. For every new model there is, by default, one layer defined by two Z-planar divisions. These divisions can be specified when creating the new model. In addition, layers may be added, edited, and removed after the model is created.

Defining the default layer with a new model

The divisions of the default layer may be specified when creating a new model. To do so, on the **File** menu, click **New...**. The **New Model** dialog appears as shown in Figure 6-2. Enter the desired **Z Min** and **Z Max**. The default layer divisions are always Z-planar.

Defining layers with the layer manager

At any time while working on a model, layers may be added, edited, and removed through the **Layer Manager** dialog. On the **Model** menu, click **Edit Layers...** (). This will open the layer manager as shown in Figure 6-11. The current model layers appear in the left-hand list in the layer manager, and the properties of the selected layer are shown in the right-hand pane.
Create a new layer

By default, there is always one layer in the model. To create a new layer, click the **New...** button in the layer manager dialog. This will open the **New Layer** dialog shown in Figure 6-12. Specify the name of the new layer and the geometry defining its bottom (base) division. Then click **OK**. The geometry may be defined as follows:

- **Constant** – Specifies a Z location such that the division will be a plane located at $Z =$ the entered value.
- **Function** – Specifies a planar division defined as $z = A + Bx + Cy$.
- **From File** – Allows the division’s geometry to be defined by an input file. The geometry may be an XYZ file, Contour file, or DXF file as described in the Working with Files section.

The new layer will automatically be sorted and inserted into the list of layers based on its based division.

Delete a layer

To delete an existing layer, first select it in the list and then click the **Delete...** button.

Edit a layer

To edit an existing layer, first select it in the list. Its properties will be shown in the right-hand pane.
• **Name** – the layer name
• **Color** – the layer color. This will define how geometry is to be colored when the Region or Cell color is set to “By Layer” as discussed in the topic, Colors.
• **Material** – the layer material. All regions and cells in the layer will inherit this material unless the material is individually overridden by the layer or cell.
• **Top** – the top division. This field may only be edited on the top layer. See Create a new layer for a description of division input.
• **Base** – the bottom division. See the Create a new layer section for a description of division input.
• **Dz** – the divisions used to create the solution mesh. This is described in the Setting Z Divisions section.
• **Initial Conditions** – these are discussed in the Boundary and Initial Conditions section.

Once changes have been made to a layer, either press **Apply** to commit the changes and keep the dialog open or **OK** to commit the changes and close the layer manager dialog.

Regions

Regions are portions of the model that have non-zero volume. They are the basis for creating high-level features in the model, such as faults. With no internal boundaries in the model, each layer consists of one region. Regions may be divided into smaller regions by adding internal boundaries as discussed in the next section. Regions are always parented by layers, and can be found in the **Tree View** as shown in Figure 6-13. This figure shows four layers that have been divided by an internal boundary, creating two regions in each layer.

![Figure 6-13: Example of layers split into multiple regions](image)

Each region may have its own set of properties, which can be accessed by double-clicking a region in the **Tree View** or in the **3D View**. The region properties window is shown in Figure 6-14.
Figure 6-14: Region properties dialog

- **Name** – the name of the region.
- **Material** – the region’s material. Cells in this region will inherit this material if they have not explicitly set a material in their properties. If this value is set to “Auto” the material will come from the owning layer.
- **Enable Region** – whether to include this region in the simulation. If this is unchecked, all cells in this region will be disabled and excluded from the simulation.
- **Initial Conditions** – see Layer and Regional Initial Conditions.

Internal Boundaries

Internal boundaries are used to divide layers into multiple regions. Material properties and initial conditions can then be defined by region. Select **Model->Add Internal Boundary...** or $\scriptsize{\text{}}$ to open the Add Internal Boundary dialog, Figure 6-15.

Figure 6-15: Defining an internal boundary

There are four options for specifying an internal boundary: **Strike + Dip**, **Three Points**, **Point + Normal**, and **Input File**. The first three options create planar divisions, each containing a different set of options to specify the plane. Figure 6-15 shows the input using the **Strike + Dip** option.

For the **Strike + Dip** option, the data include:

- **Point on Plane** – The coordinates of a point on the boundary plane.
• Strike Azimuth – The degrees from North (the positive Y axis) in a clockwise direction.
• Dip Angle – Degrees from horizontal of the plane. If the viewer is facing the azimuth direction, the dip is to the viewer’s right.

For the **3 Points on a Plane** option, the data include:

• Points on Plane – The coordinates of three points on the boundary plane.

For the **Point + Normal** option, the data include:

• Point on Plane – The coordinates of a point on the boundary plane.
• Normal to Plane – The components of a vector normal to the plane. They do not need to be normalized.

For the **Input File** option, a 3D contour can be defined using the contour, XYZ, or DXF file formats (see Working with Files). An example is shown in Figure 6-16.

![Figure 6-16: The internal boundary shown in the model](image)

NOTE: Internal boundaries from input files are not automatically extended to the model boundary as layer divisions are. This means that the internal boundary will only split off new regions if it touches or intersects all surrounding geometry. If it does not, it will be added to the model as a geometric surface floating in the middle of the model as shown in Figure 6-17.
A video example of how to use SketchUp to create a DXF file for import to PetraSim is available at www.petrasim.com. The demo shows how to define a cylindrical region inside a rectangular mesh, so that different material properties can be associated with that region, Figure 6-18.

Faults
Faults are not explicitly modeled in PetraSim, but they can be created using internal boundaries and regions. To do so, add two internal boundaries to split off a new region. This new region between the boundaries corresponds to the fault. The fault properties can then be specified by editing the region as discussed in the previous section.
With more complex models with several layers, the fault may be split into many regions, spread across several layers as shown in Figure 6-19. This may make it difficult to find the fault regions using just the Tree View or 3D View. To more easily find the regions, perform the following steps:

1. Select the two internal boundaries defining the fault from the Tree View.
2. Right click on one of the boundaries in the Tree View, and from the context menu, select “Select Regions Inbetween.”

This will select and highlight the fault regions as shown in Figure 6-19.

Cleaning Up the Model

Sometimes after making many changes to a model, such as adding and deleting internal boundaries or layers, the conceptual model may appear to have extraneous edges or other irregularities as shown in Figure 6-20. To fix these problems and clean up the model, from the Model menu select **Regenerate Conceptual Model**. This will rebuild the conceptual model. This should be a safe operation that will maintain all model properties and should make the model appear cleaner, but it is recommended to save the model before performing this operation.
Figure 6-20: Cleaning a conceptual model
Solution Mesh

7. Solution Mesh

PetraSim provides three types of solution meshes:

- **Regular** – cells are rectangular hexahedrons.
- **Polygonal** – uses extruded Voronoi cells to conform to any boundary and support refinement around wells.
- **Radial** – represents a slice of an axisymmetric cylindrical mesh. This is based on the **Regular** mesh, but it only allows 1 Y-division.

Figure 7-1 shows the different types of meshes.

![Figure 7-1: Types of solution meshes](image)

a. Regular Mesh

b. Polygonal Mesh

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c. Radial Mesh</td>
</tr>
</tbody>
</table>

All meshes in PetraSim conform to the layers of the model in the Z direction, so if a layer slopes upward, the mesh cells will also slope upward to conform. An example of this is shown in Figure 7-2.
Defining a Solution Mesh

Defining a solution mesh requires two steps. First the Z divisions must be specified per-layer in the Layer Manager dialog. Then a mesh of the desired type must be created with the Create Mesh dialog.

In the following sections, it is important to note the distinction between a model layer and a cell layer. A model layer is a layer defined in the conceptual model to define stratigraphy or other model properties. A cell layer is a portion of the model layer that corresponds to the solution mesh. Each model layer may be split into any number of cell layers.

Setting Z Divisions

The Z divisions control how many cell layers are created per model layer. When a new mesh is created, each model layer is divided into a number of cell layers as seen in Figure 7-2 and then each cell layer is further refined in the XY dimensions based on the type of mesh created as discussed in the following section.

To edit the Z divisions for a layer, open the Layer Manager dialog as described in Defining layers with the layer manager. The Z divisions are entered in the Dz section. If Dz is set to Regular, the layer will be divided evenly into a constant number of cell layers when creating a new mesh. If this is set to Custom, a table will appear, allowing the cell layer divisions to be entered as custom sizes. Figure 7-3 shows an example of creating custom Dz. This Dz table allows the divisions to be entered such that a Fraction of the layer will be divided into the specified number of Cells. Each row in the table is ordered such that going down in the table corresponds to increasing Z values.1

1 If a solution mesh already exists in the model and Dz is changed for a layer, the mesh will NOT automatically update with the new number of layer divisions. The mesh must be recreated to update the divisions.
Creating the solution mesh

Once the Z-divisions have been set per layer, a mesh may be created in the Create Mesh dialog. The parameters entered in the Create Mesh dialog control how each cell layer is divided into horizontal pieces. To create the mesh, from the Model menu select Create Mesh... or click to open the Create Mesh dialog, Figure 7-4. Choose the desired Mesh Type from the drop-down box, and enter the required parameters as described in the following sections.

Regular Mesh

A regular mesh is rectangular and is made of six-sided cells. It is created such that it fits the bounding box of the model. Because a model boundary does not necessarily have to be a rectangle, any cells outside the model boundary are disabled. The parameters for controlling cell sizes in the X and Y
Solution Mesh

directions are shown in Figure 7-4. Cell sizes can either be constant in the x and y directions using the **Regular** division type or vary in either direction using the **Custom** division type or size factors.

If **Regular** divisions are specified, **X Cells** and **Y Cells** correspond to the number of cells in the X and Y directions. A factor can be used to increase or decrease element size. If the factor is 1.0, then all cells in that direction have the same size. If not, the relations in Figure 7-5 can be used to calculate the cell size that will result for a given initial size and factor.

\[l = l_0 + l_1 + l_2 + \ldots + l_{n-1} \]
\[l = l_0 f^0 + l_0 f^1 + l_0 f^2 + \ldots + l_0 f^{n-1} \]
\[l = l_0 \sum_{i=0}^{n-1} f^i \]

Figure 7-5: Calculating cell size when the factor is not 1.0

Cell sizes can also be more finely controlled using the **Custom** division option. The sizes are entered into a table as shown in Figure 7-6. Each row in the table specifies that a portion of the mesh in the X or Y dimension should be a specific number of evenly spaced cells. Similarly to specifying Z divisions, the order of the rows matter: each entry going down in the table corresponds to an increase in the X or Y direction. In Figure 7-6, the model boundary goes from X=0 to X=1500, and Y=0 to Y=1000. From the table, the first half of the solution mesh in the X dimension (X=0 to 750) contains 5 evenly spaced divisions and the second half (X=750 to 1500) contains 15. Similarly in the Y dimension, the first quarter (Y=0 to 250) contains 12 cells and the last three quarters (Y=250 to 1000) contains 3 cells. Note that the **Fraction** for each dimension must add up to 1.0.

Figure 7-6: Example of custom divisions for a regular mesh

Polygonal Mesh

A polygonal mesh can be used to match an arbitrary boundary or provide additional refinement around wells. The parameters for creating a polygonal mesh are shown in Figure 7-7.
Solution Mesh

- **Maximum Cell Area** – defines an approximate value for the maximum area of each cell in the XY plane.
- **Max Area near Wells** – defines an approximate XY cell area near wells.
- **Min Refinement Angle** – controls how quickly the area near wells disperses. The smaller this value is, the more quickly the cells will return to the maximum cell area extending radially out from the well.

![Create Mesh](image)

Figure 7-7: Parameters for a polygonal mesh

Radial Mesh

The user can also create a radial RZ (axisymmetric) mesh. An RZ mesh is modeled as a 2D slice through a cylinder centered at (0,0,0) as shown in Figure 7-8. In this slice, the red line is the portion of the cylinder that is modeled by the RZ mesh. It appears in the model as a 2D regular mesh with the X divisions representing the radial divisions and the number of Y divisions being 1.\(^1\)

\(^1\) While the radial mesh will be displayed as a rectangular mesh with only one Y division, all cell data is displayed and written to the TOUGH input file with the correct cell volumes and connection areas to represent the cell revolved around the center of the cylinder.
To create a radial mesh, select the radial mesh option in the **Create Mesh** dialog as in Figure 7-9. The only parameter needed to create the mesh is the radial divisions, which correspond to the X divisions in the resulting mesh. These are specified similarly to the divisions in a **Regular Mesh**.

Editing Cells

Once a mesh has been created, every cell will be assigned to a region in the conceptual model based on the center of the cell. This allows each cell to inherit the properties of the owning region, such as materials and initial conditions. Each cell may be edited to provide more fine-grained control over its properties. The user can edit the properties of a cell from the **3D View** or **Tree View** by double-clicking the desired cell or selecting the desired cells, right-clicking on one, and selecting **Edit Cells**... from the context menu as shown in Figure 7-10. The **Edit Cells** dialog is shown in Figure 7-11.
- **Cell Name** - A descriptive name that can be used to access cell results for plotting. If this name is not empty, the cell will be displayed in the **Tree View** under “Named/Print Cells”.
- **Cell ID** - This is calculated by PetraSim, not editable.
- **X, Y, and Z Center** - The center of the cell, not editable.
- **Volume** - The volume of the cell calculated based on dimensions, not editable.
- **Volume Factor** - A multiplier on the volume that is used to obtain the final volume sent to the TOUGH input file.
- **Permeability Factor** – A multiplier for the permeability of the cell sent to the TOUGH input file.
- **Material** - The material for the cell.!
- **Type** – The cell type. See Enabled, Disabled, and Fixed State Cells for further details.1

![Figure 7-10: Editing a cell in the 3D View](image)

1 If “Auto” is selected in the drop-down, the property will be taken from the cell’s owning region.
The Sources/Sinks and Initial Conditions tabs will be described in Boundary and Initial Conditions.

The Print Options tab is used to output cell data every time step for the selected cells (this is the FOFT file as used by TOUGH). In addition, connection data can be written (this is the COFT file as used by TOUGH).

Enabled, Disabled, and Fixed State Cells
In the cell editor, a cell can be set to Type Enabled, Disabled, or Fixed State, with the following meanings:

- An Enabled cell is a standard cell in the analysis.
- A Disabled cell will not be included in the analysis. No information about this cell will be written to the TOUGH input file. It will not be included in the results.
- A Fixed State cell is used to set boundary conditions. The cell is included in the analysis, but the state of the cell (Pressure, Temperature, etc.) will not change. In the TOUGH2 User's Guide, such cells are named "Inactive". It was necessary for us to use a different name to distinguish between Fixed and Disabled cells.

Extra Cells
There are times when the capability to add non-geometric "extra" cells is useful. These extra cells can be used to define special boundary conditions or in other ways to "trick" the model into representing some special feature.
Support for "extra" cells is provided in PetraSim through dialogs. Since these cells are not geometric, the user must define the volume and connections of these cells to the regular grid cells. To create an extra cell, on the Model menu, click Add Extra Cell.... Figure 7-12 illustrates the definition of the basic cell properties. These basic properties are similar to that of a normal cell as discussed in Editing Cells.

Figure 7-12: Defining the basic extra cell properties

The Sources/Sinks, Initial Conditions, and Print Options for an extra cell are the same as a standard cell.

The connections of the extra cell to the grid are specified by selecting the Connected Cells tab, Figure 7-13. The user must manually specify the connection data required by TOUGH. This includes:

- **To Cell** - This is the cell to which the extra cell is connected. This will be the cell ID of a cell in the mesh. You can find the cell ID of any cell using the Grid Editor and then viewing the cell properties.
- **Orientation** - This is must be 1, 2, or 3 and corresponds to the PermX, PermY, or PermZ definitions in the material data.
- **Dist. This** - The distance of the connection in the extra cell. See TOUGH concepts "Spatial Discretization."
- **Dist. To** - The distance of the connection in the connecting cell.
- **Area** - The cross-sectional area of the connection.
- **Gravitational Acceleration** - The cosine of the angle between the gravitational acceleration vector and the line between the two elements. If positive, the extra element is above the connecting "To" element.
- **Radiative Heat Transfer** - "Radian emittance" factor for radiative heat transfer. Usually left as 0.0.
To edit an extra cell, double click on the extra cell in the Tree View.
8. Materials

Materials are used to define the permeability and other properties in an analysis. Each cell is associated with a material. Materials can be assigned by layer (select a layer and edit the layer properties), by region (select a region and edit the region properties), or to individual cells (select the cell and edit the cell properties). PetraSim uses inheritance to determine any particular cell property: it first looks in the cell; if the property is not found there, it looks in the region; then it looks in the layer; finally it looks in the default model.

When a new model is started, there is one default material. Material data is edited by selecting \[\text{Material}\]. In this dialog, the user can edit, create, and delete materials, Figure 8-1. The basic material data includes (many are self-explanatory):

- **Name** - The material name that will be written to the TOUGH input file, limited to five characters.
- **Description** - A longer description for user clarity.
- **Color** – The color that will be used in the 3D and Results Views to color cells and regions when the cell or region color option is set to “Material.”
- **Rock Density** - Density.
- **Porosity** - Porosity
- **X, Y, and Z Permeability** - The permeability is defined along each axis.\(^1\)
- **Wet Heat Conductivity** - Wet conductivity
- **Specific Heat** - Specific heat.

\(^1\) When using a *Polygonal* mesh, only an XY and Z permeabilities may be specified. The XY permeability is used between cells in one cell layer.
Relative Permeability
Selecting the Relative Perm... button displays the Additional Material Data dialog. The first tab is used to define Relative Permeability, Figure 8-2. The user selects the desired relative permeability function and then defines the parameters used by that function. A graph will display the permeability (magenta is gas; blue is liquid) as a function of liquid saturation.
Capillary Pressure
Select the Capillary Pressure tab to define the capillary pressure function, Figure 8-3. The user selects the desired capillary pressure function and then defines the parameters used by that function. The value of ICP corresponds to the TOUGH function ID. The Help section of http://www.petrasim.com provides a spreadsheet to plot the capillary pressure functions.
Materials

Figure 8-3: Capillary pressure functions

Miscellaneous Material Data
Select the Misc tab to define additional material properties, Figure 8-4. These include:

- **Pore Compressibility** - This defines how the pore volume changes as a function of pressure. This is used when storativity is to be included in the model, such as when performing a well test analysis. In most cases, this is not used and remains 0.0.

- **Pore Expansivity** - This defines how the pore volume changes with temperature. In most cases, this is not used and remains 0.0.

- **Dry Heat Conductivity** - Used with the wet heat conductivity to change the thermal conductivity of the rock.

- **Tortuosity Factor** - The user is referred to Appendix D of the TOUGH2 User's Guide for a detailed discussion of this factor. In most cases, this is not used and remains 0.0.

- **Klinkenberg Parameter** - The user is referred to Appendix A of the TOUGH2 User's Guide for a detailed discussion of this factor. In most cases, this is not used and remains 0.0.
Assigning Different Materials by Cell

To support the use of geostatistical data, PetraSim allows the user to import a table of material assignments for all cells. This is useful if the user has an independent representation of the model that can be queried to obtain a spatial definition of materials. PetraSim provides two tools:

- The capability to write a file with cell IDs and X, Y, Z coordinates.
- The ability to paste a table of material types for all cells.

To write a file with cell IDs and X, Y, Z coordinates, on the File menu, click Write Grid Data.... The resulting file defines the cell coordinates in their PetraSim order that allows you to query a separate material database.

On the Model menu, click Assign Cell Materials... to open the Assign Cell Materials dialog, Figure 8-5. You can either type or paste a list of materials to be assigned to each cell. All materials must have already been defined. Values in the Material Name column must match the name of a material stored in the current model.
Figure 8-5: Assign Cell Materials dialog

<table>
<thead>
<tr>
<th>Material Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
</tbody>
</table>
9. Boundary and Initial Conditions

Initial Conditions

Initial conditions are used to define the initial state of each cell. When generating the simulator input file, a hierarchy is used to determine values for each cell: if a value is defined at the cell, that value is used; if defined at the region, the region's value is used; if defined at the layer, the layer's value is used; finally, the default model initial conditions will be used.

The specific initial conditions are different for each EOS. For any specific EOS, there are at least single- and two-phase initial conditions, as well as options for different components. The user is referred to Chapter 3, Tough Concepts for a discussion of components and an example of setting single- and two-phase initial conditions.

Only for the simplest models will the initial conditions be uniform over the model. In most realistic analyses, a steady state simulation will be used to reach an equilibrium solution. For example, this will be used to reach gravity-capillary equilibrium in a vadose zone analysis or heat and fluid flow equilibrium in a geothermal reservoir analysis. The steady state results will then be used as initial conditions for the transient analysis. When this approach is used, two separate folders should be used to store the steady state analysis and the transient analysis.

Because of the complex physics represented in TOUGH, setting of the initial conditions can be challenging. The user is directed to the many examples available at the PetraSim web site for guidance on how others specify initial conditions.

Default Initial Conditions

Default initial conditions are always defined for the model. To set these conditions, on the Properties menu, click Initial Conditions... (). This will open the Default Initial Conditions dialog, Figure 9-1.

You will then be provided all the available initial condition options that are valid for the EOS and selected components. Based on your knowledge of the problem, define these appropriately.

![Figure 9-1: Setting default initial conditions](image)
Layer and Regional Initial Conditions
Initial conditions can also be set per layer or region. To do so, select the layer or region and then select Edit->Properties.... On the dialog, select the Initial Conditions tab. After selecting, Specify by Layer/Region, you will be able to define initial conditions, Figure 9-2. If you do not want region initial conditions to be used, deselect Specify by Layer/Region and the initial conditions will inherit from the parenting layer or default initial conditions for regions and layers, respectively.

Cell Initial Conditions
To define initial conditions by cell, open the Edit Cells dialog as discussed in Editing Cells. On the Initial Conditions tab of the Edit Cell Data dialog, select Specify Initial Conditions by Cell, Figure 9-3. You will then be able to define initial conditions for a cell. If you do not want cell initial conditions to be used, select Use Region (or Global) Initial Conditions.
Loading Previous Results as Initial Conditions (Restart)
To read initial conditions from a previous analysis, select File→Load Initial Conditions... and read a previous SAVE file. The model used to write the SAVE file must have the same geometry as the model for which you are reading data. See the Restart section in this document for more details. Because the new analysis will over-write the existing SAVE file, save the PetraSim model to a new directory before starting the restart analysis. You can change the start time of the restart analysis to match the end time of the first analysis.

Boundary Conditions

Fixed Boundary Conditions
Boundary conditions where the pressure, temperature, and other variables do not change with time (called "essential" or Dirichlet boundary conditions) are typically set using "Fixed State" option in a cell. This is done by editing the cell (see Editing Cells for details).

A cell with fixed conditions will act as a source/sink for fluid and heat flow.

"Tricks" can be used to selectively fix the pressure or temperature independently. For example, to fix the pressure, the material of the cell can be changed so that the thermal conductivity is zero. Then, only fluid will flow to the cell and the cell will act as a fixed pressure. Similarly, the permeability could be set to zero for the cell to act as a fixed temperature condition.
Sources and Sinks
Sources and sinks are used to define flow into or out of the cell. These are typically used to define production from or injection into a cell. This is used for situations such as a well in a reservoir or rainfall on the surface.

The rates can be defined as constant or using a table to give time/rate pairs. By default, PetraSim assumes a step change when a time history of input is specified. This can be changed in the Solution Parameters options.

To define a source or sink, open the Edit Cell dialog as discussed in Editing Cells. Select the Sources/Sinks tab as shown in Figure 9-4. The user has several options:

- **Heat** - The rate of Heat In can be defined as a constant or through a table as a function of time. Use a negative number to remove heat. If a flux is selected, the flow rate is equal to the flux multiplied by the area of the cell projected on the XY plane (the flux is in the Z direction).
- **Mass Out** - This defines the mass (or mass flux) rate produced from the cell.
- **Well on Deliverability** - This defines a boundary condition where the cell produces to a fixed pressure. The user defines the Productivity Index and the pressure. See page 64 of the TOUGH2 User's Guide for instructions on calculation of the Productivity Index.
- **Well from File** - This is a coupled wellbore flow model. See page 66 of the TOUGH2 User's Guide for instructions on its use.
- **Injection** - Injection parameters will vary depending on the EOS being used. In general, the user will specify a rate (or flux) and an enthalpy for each component to be injected.
Boundary and Initial Conditions

Using Wells in PetraSim

PetraSim provides a basic option to define wells as geometric objects (lines in 3D space). Injection or production options are assigned to the well and PetraSim handles the details of identifying the cells that are intersected by the well and applying the appropriate boundary conditions to each cell. This is not a true coupled well model; it is a means of identifying the cells that intersect a well and creating the individual sources/sinks for each cell. It also provides a way to label and display wells. The cells intersecting a well can be easily viewed and selected by right-clicking the well in the Tree View and selecting “Select Cells.” Additional mesh refinement may be achieved around wells by using Polygonal meshes as discussed in the topic, Polygonal Mesh.

Adding a well and defining the boundary conditions is a two step process. Define the well coordinates by selecting Add Well... on the Model menu or from the main toolbar. This will open the Add Well dialog as shown in Figure 9-5. Name the well and give the coordinates in order, either starting at the top or bottom of the well. The new well will be displayed in the tree view.
To edit the well, double-click it in the Tree View. This will show the Edit Well dialog as shown in Figure 9-6.

The minimum and maximum Z coordinates of the completion interval (the range over which the well can flow to the porous media) can be edited under the Geometry tab. In the 3D View, the completion interval is the red portion of the well as shown in Figure 9-7. For models that will use the Well on Deliverability option, it is best if these completion bounds correspond to gridlines in the model. This is because the entire cell depth is used when calculating the Well on Deliverability flow. If the well will use k*h or Uniform options to distribute the flow, then the completion interval does not need to correspond to the gridlines.
Select the appropriate production or injection options under the Flow tab. When flow rates are specified, the number is for the entire well. Flow into each cell the well intersects is apportioned either by k^*h (permeability*height) or uniformly. If k^*h is used, the total k^*h is calculated for the entire well and then the flow into each cell is determined by the permeability and height (intersection length) for that cell. Using this approach, more flow is injected (produced) into cells with higher permeability. The uniform distribution proportions flow by the intersection length of each cell. In either of these cases, PetraSim creates individual sources/sinks for each cell intersected by the well. These sources/sinks are independent of each other.

For the Well on Deliverability option, the user can select the Well Model or User Defined gradient. The Well Model option activates the TOUGH2 well on deliverability model, where the pressure gradient is calculated using a depth dependent flowing density in the wellbore (see the TOUGH2 user manual). In this case, the specified pressure corresponds to the pressure at the center of the top cell in the well. If the User Defined gradient is selected, the pressure is that at the top of the completion interval and the user specifies the gradient directly. For both cases, follow the TOUGH2 guidelines for calculating the Productivity Index.

Output for the well can be controlled under the Print Options tab.

Time-Dependent Essential (Direchlet) Boundary Conditions
Although TOUGH2 provides an easy way to set constant essential (Dirichlet) boundary conditions using the "Inactive" cell option, there is no similar provision for time-dependent boundary conditions. There are two reasons for this decision:

- This places a significant burden on the user to ensure that all specified states would be physically meaningful.
Boundary and Initial Conditions

- "The user could get into terrible problems when phase compositions change in the boundary cell, because then primary variables get switched. The user could end up interpolating between one number that means temperature, and another that means saturation." (15)

The alternate approach is to rely on TOUGH2 to handle any phase change by injecting or withdrawing mass and/or heat from boundary condition cells, thus using natural (Neumann) boundary conditions to obtain the desired essential boundary conditions in the cell. However, since this is an indirect way to accomplish the desired goal, the user needs some guidance on how to accomplish this.

The boundary condition cells should be thought of as cells that are not part of the solution. Therefore, we can set material properties and other parameters in ways that are not tied to the actual problem to be solved. The following sections describe some useful "tricks."

Use a Very Large Volume

The first concept is to make the volume of the cell with the boundary condition "very large" relative to the other cells in the grid. There is no absolute definition of "very large" but the concept is that the volume should be so large that flow in and out of the boundary condition cell to model cells will have negligible effect on temperature or pressure in the boundary condition cell. A typical value could be a volume of 1.0E50 m3. In PetraSim, this can be accomplished by setting the volume multiplication factor to a large number (see Editing Cells).

Setting a Temperature Condition

For a simple temperature boundary condition, we do not want flow into or out of the cell. This can be accomplished by making a special material that has zero permeability and small porosity and applying it to this cell. It is also necessary that the connections between the temperature boundary condition cells and the other cells in the model have a non-zero length in the boundary condition cell. The use of zero permeability and small porosity has two effects:

- Because of the small porosity, calculating the necessary heat input/output to change the cell temperature is easy, since there is negligible fluid in the cell and the rock specific heat can be assumed for the entire cell.
- Because of zero permeability, no fluid will flow from this cell into any connected cells (the non-zero length connections are also necessary). Note: Although zero permeability is the correct approach, the user should be aware that for upstream weighting of absolute permeability (MOP(11) = 0 or 1), it is still possible to force flow into a cell with zero permeability and non-zero nodal distance (15).

The user then sets the desired initial temperature and then specifies the heat flow into (or out) of the cell to obtain the desired change in boundary condition cell temperature.

This method is directly applicable in PetraSim.
Setting a Pressure Boundary Condition

Setting a pressure boundary condition can be accomplished in a similar manner as that used to set a temperature. In this case, a new material is created with zero thermal conductivity and assigned to the cell. As before, it is also necessary that the connections between the temperature boundary condition cells and the other cells in the model have a non-zero length in the boundary condition cell. The pressures in the cell can now be controlled by flow into and out of the cell (see the following example).

This method is directly applicable in PetraSim.

Caution: If the specified pressure results in flow from the boundary condition cell to model cells, the heat transported by that flow will affect the temperature in the model cells.

Combined Pressure and Temperature Boundary Conditions for Single Phase Liquid

Experienced TOUGH2 users often apply simultaneous temperature and pressure boundary conditions by creating two boundary condition cells, as described above, and then connecting both boundary condition cells to the same cell in the model. TOUGH2 accommodates this, since it is not required that connections represent physically meaningful geometries. PetraSim supports this option through the use of "extra cells."

In the following we describe a way to accomplish the same objective, but using only physically meaningful geometry. This method also handles the combined pressure and temperature conditions in a way that usually corresponds to the desired physical behavior with respect to heat transport by flow out of the boundary condition cell.

Setting combined pressure and temperature boundary conditions will use the following concepts:

- A "very large" volume in the boundary condition cell. Consequently, heat or mass flow to connected model cells will have negligible effect on the temperature or pressure in the boundary condition cell.
- A "somewhat larger" permeability in the boundary condition cell (maybe 1000 times the normal value). This allows fluid flow into or out of the boundary condition cell and ensures that the pressure drop in the boundary condition cell will be approximately zero. Note: Pruess does not recommend changing the permeability due to possible numerical problems, but instead suggests changing the nodal distance to be small (1.0E-10).
- A "small" value for the porosity of the boundary condition cell. As a result, the rock heat capacity can be used to calculate the required heat flow to change temperatures.
- A "large" value of pore compressibility. This means that water compressibility can be neglected in the calculation of pressure changes due to flow into or out of the boundary condition cell and that changes in volume due to temperature changes will have negligible effect on pressure.
- Specification of heat flow to the boundary condition cell to obtain the desired time-dependent boundary temperature.
- Specification of fluid flow to the boundary condition cell to obtain the desired time-dependent boundary pressure.
Multi-Phase Pressure and Temperature Boundary Conditions
For multi-phase conditions, the pore compressibility can be left as zero, since the gas phase will serve the same purpose. The flow to control pressure would use the gas phase and would need to account for the mixture compressibility.

Solution Controls
The solution cannot resolve transients to a level finer than the time step. Therefore, it is necessary to limit the maximum time step. For example, if the period of a transient is one day, it will be necessary to divide the day into several time steps (5 to 10) to capture the transient response.

By default, TOUGH2 averages the flow data at the beginning and end of the time step. This is fine if the transient is smooth and several time steps are used during to resolve the transient. If larger time steps are used, it is important to activate the rigorous step rate option (In PetraSim, Solution Controls/Options).

Example
The following example is based on a desire to specify time-dependent temperatures and pressures that represent the conditions for a stream in a groundwater calculation. The desired values are given in Figure 9-8 and Figure 9-9.

![Figure 9-8: Desired boundary conditions](image-url)
For the example, create a cell with dimensions of 1 m on each side, but set the volume factor to be 1.0E50. We set the material properties as Figure 9-10.

![Figure 9-9: Graph of desired boundary conditions](image)

We calculate the heat flux as follows:

\[\dot{Q} = V \rho \frac{c_p}{\Delta t} \frac{\Delta T}{\Delta t} \]

where \(\dot{Q} \) is the heat flux, \(V \) is the cell volume, \(\rho \) is the rock density, \(c_p \) is the rock heat capacity, \(\Delta T \) is the change in temperature, and \(\Delta t \) is the change in time. Note that since the porosity is very small, we only use the rock properties and apply this to the entire cell volume. The calculated values are shown in Figure 9-11.
Similarly, we calculate the required fluid flow rates using:

$$\dot{m} = \rho_{\text{water}} \phi C \frac{\Delta P}{\Delta t}$$

where ρ_{water} is the density of water, ϕ is the porosity, C is the pore compressibility, and ΔP is the change in pressure. The calculated values are shown in Figure 9-12.

These are input to TOUGH2. Note that this is a bit tricky, since injection and production must both be set on the same cell. This means that two separate conditions must be set. The injection for flow in and
the production for flow out. Set these terms zero when the other is acting, that is, during injection, the production is zero and during production the injection is zero.

The resulting plots show excellent agreement between temperatures, and not quite as good agreement for pressures.

Figure 9-13: Comparison of desired and calculated boundary condition temperatures

Figure 9-14: Comparison of desired and calculated boundary condition pressures in TOUGH2

These concepts are described in an example problem available on the PetraSim web site.
10. Solution and Output Controls

Solution Controls

The Solution Controls dialog allows the user to specify all aspects that will be used by TOUGH in solving the problem. To set these controls, select **Analysis->Solution Controls...** or 📐 to open the Solution Controls dialog.

Times Tab

Select the **Times** tab, Figure 10-1. This tab is used to input all data related to solution times and time step control.

![Solution Controls Dialog](image)

Figure 10-1: The Times tab controls

- **Start Time** - The start of the analysis. In most cases this will be 0.0.
- **End Time** - The end time of the analysis. Usually specified, but can be set to infinite and then solution will run for the Max Num Time Steps
- **Time Step** - User control of the time steps. If Automatic Time Step Adjustment is enabled (recommended), this is the initial time step used in the analysis. The user can also specify a table of time steps for the solution. If a list of time steps is given, the last time step will be used until the End Time is reached. If the user has selected to define the time steps in a table and enabled Automatic Time Step Adjustment, the specified table of time steps is used first, with
automatic adjustment after if the number of solution time steps exceeds the number of time steps in the list.

- **Max Num Time Steps** - The maximum number of time steps for the solution. If this number is exceeded, the analysis ends.
- **Max CPU Time** - A control to limit the maximum CPU time used in the analysis. If this number is exceeded, the analysis ends.
- **Max Iterations per Step** - The maximum number of iterations for a time step. If exceeded and Automatic Time Step Adjustment is enabled, then time step will be reduced.
- **Automatic Time Step Adjustment** - If selected, the time step size will be automatically adjusted (recommended).
- **Max Time Step** - Maximum time step that will be used when adjusting the time step.
- **Iter. to Double Time Step** - If convergence is reached in this number of iterations, then time step size will be increased.
- **Reduction Factor** - If convergence fails in Max Iterations per Step, then time step will be reduced by this factor.

Solver Tab
Select the **Solver** tab, Figure 10-2. TOUGH provides conjugate gradient and direct solvers, with several options. The user can select the solution method and options for that method. Either the Preconditioned Bi-Conjugate Gradient (default) or Stabilized Bi-Conjugate Gradient methods are recommended.
TOUGH2-MP Tab (TOUGH2-MP license only)
Select the TOUGH2-MP tab, Figure 10-3. These are options for the TOUGH2-MP simulator. The Additional N/R iterations after convergence option controls the value of MOP(21) in record PARAM.1. The simulator can be set to perform one additional Newton-Raphson iteration after convergence if needed.
Weighting Tab
Select the **Weighting** tab, Figure 10-4. This tab provides several options about the weighting in calculations at interfaces.
The Upstream Weighting Factor is used to calculate mobilities and enthalpies at interfaces, and must be a value from 0 to 1. The Newton-Raphson Weighting Factor is used to calculate increments in Newton-Raphson iteration, and must be a value from 0 to 1.

Convergence Tab
Select the Convergence tab, Figure 10-5 to edit the Relative Error Criterion and Absolute Error Criterion. For more information on these values, see the TOUGH2 User’s Guide.
Solution and Output Controls

Figure 10-5: The Convergence tab

Options Tab
Select the Options tab, Figure 10-6. This tab allows the selection of various other options provided by TOUGH2.
Solution and Output Controls

- **Composition of Produced Fluids** - The relative amounts of phases in the produced fluid are determined either according to the relative mobilities in the source element or the same as the producing element.
- **Heat Conductivity Interpolation** - The interpolation formula for heat conductivity as a function of liquid saturation (S_l).
- **Boundary Condition Interpolation** - The interpolation procedure for time dependent sink/source data (flow rates and enthalpies).
- **Derivative Increment Factor** – The increment factor for numerically computing derivatives.

Output Controls
The Output Controls dialog allows the user to specify output options. To set these controls, on the Analysis menu, click **Output Controls**... (), see Figure 10-7.
Output Controls options include:

- **Print and Plot Every # Steps** - Output will be written at the specified time step increment.
- **Additional Print and Plot Times** - This opens a table in which you can give specific times at which output is desired.
- **Additional Output Data** - Select fluxes and velocities to have the output data necessary to include flux arrows in the 3D plots. Selecting Primary Variables is usually only used for debugging purposes.
- **Additional Printout** - These options are usually only used for debugging purposes.
11. Running Simulation

Running a Simulation
To run a simulation: on the Analysis menu, click Run TOUGH2 (). This will first save the PetraSim model file and then the Running TOUGH2 dialog will be displayed, Figure 11-1.

The Running TOUGH2 dialog displays simulation time steps on the X-axis and the log of the time step on the Y-axis. As a rule of thumb, a growing time step is a good sign of simulation progress. If your time steps start to become smaller, it may indicate that the simulator is having a difficult time converging.

When the simulation finishes, a message will be displayed and the Cancel button will turn into a Close button. Click the Close button.

Figure 11-1: Running the TOUGH analysis

Setting TOUGH2 Analysis Priority
A TOUGH2 analysis makes heavy demands of the computer processor; if you are running a single core computer, you may want to reduce the priority of the TOUGH analysis. Start the Task Manager (Ctrl+Alt+Delete or right-click on the lower toolbar). On the Processes tab, click on CPU to sort by the process using the most CPU (you may need to click twice to bring highest CPU users to the top of the list). You will see a process such as "EOS7.exe". Right-click on the process, select Set Priority and select Low. Close the dialog.
Running Simulation

Setting the priority low will keep your computer response snappy to other tasks and allow the CPU to support the TOUGH analysis when not needed for other tasks.

Monitoring Progress of TOUGH Analysis
During the TOUGH analysis, there are several ways to monitor progress. One way is to go to the problem directory and, using a text editor, open the *.out file as it is written by TOUGH. In this file will be text similar to the following:

```
*************************
***********************
260(  21,  3) ST = 0.209715E+09 DT = 0.104858E+09
365(  22,  3) ST = 0.419430E+09 DT = 0.209715E+09
51(  23,  4) ST = 0.838861E+09 DT = 0.419430E+09
216(  24,  4) ST = 0.125829E+10 DT = 0.419430E+09
258(  25,  4) ST = 0.167772E+10 DT = 0.419430E+09
```

The first number is the ID of the cell with the smallest time step. The first number in the parentheses is the time step counter and the second number is the number of iterations required for that step to converge. ST is the total solution time. DT is the solution time increment.

Writing the Input File
Most users will not need to explicitly save a input file, since this is automatically written when the analysis is performed. However, if you are using a special executable, you can save the input file without attempting to run a simulation. To save the input file(s): on the **File** menu, click **Write TOUGH2 File...** to write the input file. If you are using another simulator (e.g. TOUGHREACT) the name of this action will be slightly different.

This file can then be edited (if necessary) and used to run your custom simulator from the command line. The results of custom compiles are not generally compatible with PetraSim's results visualization system. If you would like suggestions on how to modify custom binaries to generate PetraSim-compatible output, please contact technical support.

Running TOUGH2-MP
TOUGH2-MP is a parallel version of TOUGH2 providing several improvements to the TOUGH2 code, including support for multiple processors and multiple machines, which can significantly reduce the time needed to run simulations. It also removes the cell count and cell connection limitations in TOUGH2, allowing multi-million cell problems.

Support for TOUGH2-MP is seamlessly integrated into PetraSim and can be purchased for nearly all EOS’. PetraSim supports TOUGH2-MP by running several processes on a single-computer with multiple cores. The number of processes to be used for TOUGH2-MP simulations may be specified in the **Preferences** dialog by going to the **File** menu and selecting **Preferences...**. By default, PetraSim will start TOUGH2-MP with as many processes as there are cores on the current PC. For instance, if the PC contains two, four-core processors (eight total), PetraSim will use eight processes to run the simulation.
TOUGH2-MP is run similarly to TOUGH2: after setting up the problem, under the **Analysis** menu, select **Run TOUGH2-MP** (). The same progress dialog is used to monitor the simulation as shown Figure 11-1. Viewing results is the same as in TOUGH2.
12. Plotting Results

PetraSim reads the TOUGH output files to make plots of results. The user can make 3D or time history plots of the data. When a plot is displayed, selecting **File/Export Data...** will allow the user to export the current plot data in either Tecplot or spreadsheet format.

3D Plots of Results

To make a 3D plot of results: on the **Results** menu, click **3D Results...** (). This will open a new window with a display of the model and pressure isosurfaces at the first output time, Figure 12-1.

![Figure 12-1: The 3D results window](image)

Plot controls include:

- **Time (s)** - A window that displays all the available output times. Select one of these times for plotting.
- **Scalar** - Select the output parameter for plotting. The scalar parameter is the one that will be used for isosurfaces and contours on slice planes. The list of parameters is dynamically created from the TOUGH output file and will be different for each EOS.
- **Vectors** - If vector data was written to the output (this must be selected as one of the Output Controls options), this will display a list of available vector data. The list of parameters is dynamically created from the TOUGH output file and will be different for each EOS.
- **Show Isosurfaces** - This checkbox turns on the display of isosurfaces for the selected scalar. The number indicates how many isosurfaces will divide the plot range. Selecting the **Scalar**
Properties... button displays a dialog, Figure 12-2, on which you can specify a specific plot range, choose to use a logarithmic scale, and specify the number of colors used on contour plots.

- **Show Vectors** - If vector information is available, selecting the checkbox will turn on the display of vector data, Figure 12-3. The Vector Scale controls the scaling factor applied to the vectors and the Vector Size Range controls the relative size of the longest to shortest vectors. By default, both the relative size and color of the vectors correspond to the magnitude of the vector. Moving the Vector Size Range to the left will result in all vectors having the same length. Selecting the **Vector Properties...** button displays a dialog, Figure 12-4, in which the user can set the range for vectors and choose whether the vector color should indicate the magnitude.

- **Show Slice Planes** - Turns on slice planes on which contours of the scalar parameter are displayed. Select the **Slice Planes...** button to define the axes normal to the planes and the coordinates of the planes, Figure 12-5. Typical plots are shown in Figure 12-6. You can also view the slices as discrete values per cell as shown in Figure 12-7 by selecting **Color Slices by Cell**.

![Scalar Properties dialog](image)

Figure 12-2: Scalar Properties dialog
Plotting Results

Figure 12-3: 3D Vector results

Figure 12-4: Vector Properties dialog
Plotting Results

Figure 12-5: Slice Planes dialog

Figure 12-6: Example of contours on slice planes
Plotting Results

Figure 12-7: Slice contours colored by cell

To write a file that can be read into Tecplot: on the File menu, click Export Data... The format of the data will be a value and then the X, Y, and Z coordinates. The data can be written either at the center or corners of each cell.

Line Plots of Results

A line plot, an XY plot of a variable along a line, can also be made from the 3D Results window. Such a plot would be used to plot temperature along a well. To make a line plot, first open a 3D Results window as discussed in 3D Plots of Results.

To make a line plot

1. On the File menu of the 3D Results window, click Line Plot....
2. In the Point 1 coordinate boxes (X, Y, and Z) type the coordinates of the starting point of the line.
3. In the Point 2 coordinate boxes (X, Y, and Z) type the coordinates of the ending point of the line.
4. Click OK to close the Line Plot dialog.
5. This will open a Line Plot window.
6. In the Variable list, select the variable for plotting.
7. In the Time list, select the time for which you want to plot the data.

An example is shown in Figure 12-8. You can export this data to a comma separated value file for import into a spreadsheet.
Time History Plots of Results
To make a time history plot: on the Results menu, click Cell History Plots... (). This will open the window shown in Figure 12-9.

You can select the variable and cell to plot. The Cell Name is the name given to the cell in the Edit Cells dialog. Time history plotting for a cell is also activated in Edit Cells dialog.
By default, only the cells for which time history data have been requested or which have been given a name are listed. To expand the list to show all cells: on the View menu, click All Cells. When all cells are selected, data will only be available at the times in the standard output file. For cells for which time history output was specified, the results are available at each time step.

Source/Sink and Cell History Plots
This section explains the flow plots created by PetraSim and how to obtain time histories of cells that have sources or sinks.

The model used as an example represents production from a highly permeable layer at about 500m depth (average P = 5 MPa, constant T = 25 ºC, single-phase conditions). The model uses EOS1 and extends for 500x500x20m with a grid of 10x10x4 cells. An initial hydrostatic solution was run. In the production run, two of the boundaries are set to a fixed state and cell 169 uses a Well on Deliverability condition with a Productivity Index of 6.0E-9 and a Pressure of 5.0E6 Pa.

The most important piece of information for a source or sink is the flow rate into/out of the cell. On the Results menu, click Source/Sink Plots..., Figure 12-11. To make this plot, the Y Scale Range was adjusted to Min Y = -135.2, Max Y = 0.0 (use View->Range...). This plot indicates that the production rate is 135.0 kg/sec.
This information can be verified by looking at the TOUGH2 output file. At the end of every printed time step, the source/sink (generation) data is given, as shown below. This data shows that the generation rate is -135.0 kg/s, which matches the PetraSim plot.

TOUGH2 Analysis

\[
\begin{array}{cccc}
\text{KCYC} & = & 20 & - \text{ITER} = 1 - \text{TIME} = 0.63070E+08 \\
\text{ELEM SRC INDEX} & \text{GENERATION RATE} & \text{ENTHALPY} & \text{X1} \quad \text{X2} \\
169 & 1 & -0.13500E+03 & 0.10940E+06 & 0.10E+01 & 0.00E+00 \\
\end{array}
\]

To understand the cell history flow plots it is necessary to know the cell names and connections. Figure 12-12 shows the cells names and how they are physically connected for the cells adjacent to cell 169. The production cell is 169 and it is connected to adjacent cells in layer 2 and to cell 48 in layer 1 and cell 290 in layer 3.

Figure 12-12: Connections for cell 169

We will first focus on the flow plot for cell 170, since that is the simplest. To see the plot shown in Figure 12-13:
Plotting Results

1. On the Results menu, click Cell History Plots...
2. On the View menu, click All Cells..., then select FLOF(X) for cell #170

Select File->Export Data... to view the numerical value of -0.029 kg/s-m².

Figure 12-13: Plot of FLOF(X) for cell 170

The flow data plotted in the Cell History plot is the flux averaged at that cell. If we go to the output file, we can obtain the actual values of flow for each connection. A part of the file is shown below.

| EL1 | EL2 | INDEX | FLOH (W) | FLOH/FLOF (J/KG) | FLOF (KG/S) | FLO(GAS) (KG/S) | FLO(AQ) (KG/S) | FLO(WTR2) (KG/S) |
|-----|-----|-------|----------|------------------|-------------|----------------|---------------|----------------|-----------------|
| 169 | 170 | 385 | 0.187373E+07 | 0.109403E+06 | 0.981440E+01 | 0.000E+00 | 0.981440E+01 | 0.000E+00 |
| 170 | 171 | 386 | 0.513389E+06 | 0.109404E+06 | 0.469187E+01 | 0.000E+00 | 0.469187E+01 | 0.000E+00 |
| 171 | 172 | 387 | 0.340934E+06 | 0.109404E+06 | 0.311627E+01 | 0.000E+00 | 0.311627E+01 | 0.000E+00 |
| 172 | 173 | 388 | 0.268545E+06 | 0.109405E+06 | 0.245460E+01 | 0.000E+00 | 0.245460E+01 | 0.000E+00 |
| 173 | 174 | 389 | 0.233448E+06 | 0.109405E+06 | 0.213379E+01 | 0.000E+00 | 0.213379E+01 | 0.000E+00 |

For the connection between cells 169 and 170, the flow is 9.81 kg/sec. For the connection between cell 170 and 171, the flow is 4.69 kg/sec. To calculate the average X flux at cell 170, we average the two flows and divide by the area between the cells (250 m² since the cell face width is 50m and the cell height is 5m). The resulting value is 0.029 kg/s-m², which matches Figure 12-11.

In the plot the negative sign indicates that the X flux is in the negative X direction. This is consistent with the positive connection sign convention used by TOUGH2. For a connection between cell 1 and cell 2, a negative FLOF indicates a flow from cell 1 to cell 2. A positive FLOF indicates flow from cell 2 to cell 1.

We now look at the more complex case of flow into cell 169, which is a production cell. To see the plot shown in Figure 12-14:

1. On the Results menu, click Cell History Plots...
2. In the Variable box, click FLOF(X)

This is a graph of fluid flux in the X direction at cell 169. The value is -0.00368 kg/s-m². To view specific values: on the File menu, click Export Data....

![Figure 12-14: FLOF(X) plot for cell 169](image)

If we look in the output file, we will find the following data for the connections, Table 12.1.

Table 12.1: Data for connections to cell 169

<table>
<thead>
<tr>
<th>Connection</th>
<th>FLOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>168->169</td>
<td>-7.97</td>
</tr>
<tr>
<td>169->170</td>
<td>9.81</td>
</tr>
<tr>
<td>158->169</td>
<td>-7.95</td>
</tr>
<tr>
<td>169->180</td>
<td>9.95</td>
</tr>
<tr>
<td>48->169</td>
<td>-34.32</td>
</tr>
<tr>
<td>169->290</td>
<td>64.98</td>
</tr>
</tbody>
</table>

Using these values and the sign convention for flows, the flows into cell 169 are represented in Figure 12-15.
If we sum these flows, the total is 135.0 kg/sec, consistent with previously discussed source/sink data.

Since this cell is a production cell, there is flow in from the left and in from the right. The average X flux is then \((7.97-9.81)/2)/250 = -0.00368 \text{ kg/s-m}^2\), which matches Figure 12-14.

Thanks to Hildenbrand Alexandra for providing this model.

Well Plots

Well plots are used to show the accumulation of cell quantities for entire wells. Well plots can be enabled by opening the **Edit Well** dialog as discussed in Using Wells in PetraSim, and under the **Print Options** tab, select “Print Time Dependent Flow and Generation (BC) Data.”

Well plots can be viewed after a simulation by opening the **Results** menu and selecting **Well Plots**. PetraSim calculates various quantities for wells based on the individual cell results for the well, including the following:

- **Flow Rate** – the total flow rate into/out of the well, calculated as \(\sum_{k=1}^{n} F_k\).
- **Flow Rate – Liquid** – the total flow rate of liquid into/out of the well, calculated as \(\sum_{k=1}^{n} F_k(1-f_{k,\text{gas}})\).
- **Flow Rate – Gas** – the total flow rate of gas into/out of the well, calculated as \(\sum_{k=1}^{n} F_k f_{k,\text{gas}}\).
- **Energy** – the total thermal energy moving into/out of the well, calculated as \(\sum_{k=1}^{n} F_k H_k\).

where \(n\) is the number of cells in the well, \(F_k\) is the flow rate in the \(k\)th cell, \(f_{k,\text{gas}}\) is the flow fraction of gas, and \(H_k\) is the enthalpy.

General Use of the Comma-Separated Value (CSV) Files

In Version 4.0 of PetraSim a significant change was made in how output data is accessed for plotting. The TOUGH2 source code was modified to output all data in comma separated value (CSV) format. This approach made plotting significantly more robust. It also provides the user with direct access to results data. The output mirrors the data output in the standard TOUGH2 output file.

The following files are available in CSV format:
Plotting Results

- **mesh.csv** – This file includes output for each cell for each output variable for all solution output times.
- **conn.csv** – This file includes output for each connection between cells for each output variable for all solution output times.
- **foft.csv** – If individual cells are selected for additional output, data is written to this file for those specific cells for every time step.
- **coft.csv** – If individual connections are selected for additional output, data is written to this file for those specific connections for every time step.
- **goft.csv** – This file includes output for each source/sink in the model.

If the user imports a CSV file into a spreadsheet, the filter options in the spreadsheet can be used to focus on specific details in the data. The CSV format also makes it easy for the user to write their own programs to read and manipulate the data.
13. Flow in Fractured Media

The MINC Approach

TOUGH uses the "Multiple INteracting Continua" (MINC) method to approximate modeling fluid and heat flow in fracture-porous media. As described in (16), "The method is applicable to flow processes in which an important aspect is the exchange of fluid, heat, or chemical species between fractures and unfractured rock. ... MINC can only be applied to media in which the fractures are sufficiently well connected so that a continuum treatment of flow in the fracture network can be made." If the fractures are not sufficiently connected, a discrete representation of the fracture should be used with a different porous material for flow in the fracture. A detailed explanation of MINC is provided in (17).

As described in (16), "The method is an extension of the double-porosity concept, originally developed by (18) and (19). It is based on the notion that fractures have large permeability and small porosity (when averaged over a reservoir subdomain), while the intact rock (the rock "matrix") has the opposite characteristics. Therefore, any disturbance in reservoir conditions will travel rapidly through the network of interconnected fractures, while invading the matrix blocks only slowly."

MINC is implemented in TOUGH as a mesh processor of the mesh. Additional cells and connections are created so that matrix blocks are "discretized into a sequence of nested volume elements which are defined on the basis of distance from the fractures. Continuum #1 represents the fractures, continuum #2 represents matrix rock in close proximity to the fractures, continuum #3 represents matrix rock at larger distance, etc. In response to an imposed disturbance in the fracture system, fluid and/or heat can migrate in the matrix blocks outward towards the fractures, or inward away from the fractures.

For a complete description, the user is referred to (16) and (17), copies of which are available in the help section of http://www.petrasim.com. At the same location, you can find the document “Understanding and Using MINC” and MINC example problems.

In PetraSim, the initial condition data is applied to both the fracture and matrix. This means that reading restart data from the SAVE file will apply the fracture data to both the fracture and matrix for each cell. This can be used used as a “trick” to speed convergence to an initial state. If the user wants to preserve the matrix data, a manual restart should be performed. For more details, see the Command Line Execution of TOUGH2 section in this document.

Using MINC in PetraSim

To activate the MINC option in PetraSim: on the Properties menu, click Global Properties... (). Click the MINC tab, Figure 13-1. Select Enable Multiple Interacting Continua (MINC). Then, the input data corresponds to that given in the TOUGH2 User's Guide.
Figure 13-1: Activating MINC in PetraSim

Once the MINC option is activated, the user will need to specify the fracture material data on the Fracture tab of the Material Data dialog. This will be the data used for the fractures. The Matrix data will be used for the rock matrix.
14. Command Line Execution of TOUGH2

There may be times that the user wants to execute TOUGH2 from the command line using the TOUGH2 executables shipped with PetraSim. One case where this is useful is to restart a MINC analysis, initializing both the fracture and matrix cells to the end states of the previous analysis. The TOUGH2 executables shipped with PetraSim are secured so that they cannot be executed without a PetraSim license. To restart an analysis and run from the command line:

1. Copy the original folder to a new folder named Restart (or whatever name you want). The reason to do this is that TOUGH2 writes to files (SAVE, INCON, etc.) whose names cannot be changed. Using a different folder prevents loss of the old data from over-writing of files.
2. Optionally, rename the *.sim and *.dat files in the new Restart folder to new names (for example, rename bubble.sim to restart.sim and bubble.dat to restart.dat). This just helps to make clear which analysis you are performing.
3. Make a copy of the SAVE file. Name it something like SAVE Copy. This preserves your original SAVE data.
4. Delete the INCON file and rename the SAVE file to INCON. The INCON file now contains the data that will be applied as initial conditions in the new analysis.
5. Use a text editor (such as Notepad) to remove all INCON data in the *.dat file. If this data is not removed, it will take precedence over the data in the INCON file, and the correct restart data will not be used.

![Figure 14-1: *.dat file before removing INCON data](image)
Figure 14-2: *.dat file after removing INCON data

6. Copy your license file (or files if there are more than one) from your license folder into your restart folder. For Windows 7, the licenses will be located in `C:\ProgramData\PetraSim\license`. You may need to type in the folder directly or enable display of hidden folders, since these folders are hidden by windows by default.

7. Identify the location of the EOS executable that you want to run. For example, if you are using EOS1, it will be located in `C:\Program Files (x86)\PetraSim 5\tough2`.

8. Start a Command Prompt window, go to the restart folder, and type:

```
"C:\Program Files (x86)\PetraSim 5\tough2\eos1.exe" <restart.dat >restart.out
```

Note that the quotes are required and that this assumes you are using EOS1 and that your *.dat file is named `restart.dat`.

9. Execution should now proceed and you should be able to open the `restart.sim` model and display the restart results.
15. Miscellaneous

Finding TOUGH2 Options in PetraSim
This map provides a listing of where TOUGH2 variables are accessed in PetraSim. Italics are used to indicate a menu item. The map is organized following the TOUGH2 User's Guide format. In addition, one each dialog, the TOUGH name for each input variable is provided.

TITLE
- TITLE - Properties->Global Properties... in Tough Global Data dialog on Analysis tab.

MESHM
This is only used with the MINC option. MINC data is given in Properties->Global Properties... in the Tough Global Data dialog on the MINC tab.

ROCKS

ROCKS.1 Record
- MAT - Properties->Materials in Material Data dialog.
- NAD - Automatically determined based on user input.
- DROK - Properties->Materials in Material Data dialog.
- POR - Properties->Materials in Material Data dialog.
- PER(I) - Properties->Materials in Material Data dialog.
- CWET - Properties->Materials in Material Data dialog.
- SPHT - Properties->Materials in Material Data dialog.

ROCKS.1.1 Record
- COM - Properties->Materials Select Relative Perm... button in Material Data dialog. On Misc tab Additional Material Data dialog.
- EXPAN - Properties->Materials Select Relative Perm... button in Material Data dialog. On Misc tab Additional Material Data dialog.
- CDRY - Properties->Materials Select Relative Perm... button in Material Data dialog. On Misc tab Additional Material Data dialog.
- TORTX - Properties->Materials Select Relative Perm... button in Material Data dialog. On Misc tab Additional Material Data dialog.
- GK - Properties->Materials Select Relative Perm... button in Material Data dialog. On Misc tab Additional Material Data dialog.
- XKD3 - Properties->Materials Select Relative Perm... button in Material Data dialog. On Misc tab Additional Material Data dialog. Only shown for EOS7R.
- XKD4 - Properties->Materials Select Relative Perm... button in Material Data dialog. On Misc tab Additional Material Data dialog. Only shown for EOS7R.
• FOC - Properties->Materials Select Relative Perm... button in Material Data dialog. On Misc tab Additional Material Data dialog. Only shown for T2VOC.

ROCKS.1.2 Record
• IRP - Properties->Materials Select Relative Perm... button in Material Data dialog. Automatically determined from selection on Relative Perm tab of Additional Material Data dialog.
• RP(I) - Properties->Materials Select Relative Perm... button in Material Data dialog. On Relative Perm tab of Additional Material Data dialog.

ROCKS.1.3. Record
• ICP - Properties->Materials Select Relative Perm... button in Material Data dialog. Automatically determined from selection on Capillary Press tab of Additional Material Data dialog.
• CP(I) - Properties->Materials Select Relative Perm... button in Material Data dialog. On Capillary Press tab of Additional Material Data dialog.

ROCKS.2 Record
• Automatically written.

MULTI
Automatically written based on EOS type and EOS options selected on Properties->Global Properties in Tough Global Data dialog on EOS tab.

START Record
Written automatically.

CHEMP (T2VOC only)
Automatically written for T2VOC based on VOC data specified in Properties->Global Properties in Tough Global Data dialog on EOS tab.

PARAM

PARAM.1 Record
• NOITE - Analysis->Solution Controls in Solution Parameters dialog on Times tab.
• KDATA - Automatically determined from selections on Analysis->Solution Controls in the Print and Plot Options dialog.
• MCYC - Analysis->Solution Controls in Solution Parameters dialog on Times tab.
• MSEC - Analysis->Solution Controls in Solution Parameters dialog on Times tab.
• MCYPR - Analysis->Solution Controls in the Print and Plot Options dialog.
• MOP(1) through MOP(7) - Automatically determined from selections on Analysis->Solution Controls in the Print and Plot Options dialog.
• MOP(9) Analysis->Solution Controls in Solution Parameters dialog on Options tab.
• MOP(10) - Analysis->Solution Controls in Solution Parameters dialog on Options tab.
• MOP(11) - Analysis->Solution Controls in Solution Parameters dialog on Weighting tab.
• MOP(12) - Analysis->Solution Controls in Solution Parameters dialog on Options tab.
Miscellaneous

- MOP(13) - Not implemented. Used only by T2DM option.
- MOP(14) - Analysis->Solution Controls in Solution Parameters dialog on Solver tab.
- MOP(15) - Properties->Boundary Conditions in Boundary Conditions dialog.
- MOP(16) - Analysis->Solution Controls in Solution Parameters dialog on Times tab.
- MOP(17) - Analysis->Solution Controls in Solution Parameters dialog on Solver tab.
- MOP(18) - Analysis->Solution Controls in Solution Parameters dialog on Weighting tab.
- MOP(19) - Properties->Global Properties in Tough Global Data dialog on EOS tab, as appropriate.
- MOP(20) - Not implemented. Used only by EOS4 option.
- MOP(21) - Not used. Instead the alternate SOLVR record is used to select the solver. Select the solver in Analysis->Solution Controls in Solution Parameters dialog on Solver tab.
- MOP(22) - Not implemented. Used only by T2DM option.
- MOP(23) - Not implemented. Used only by T2DM option.
- MOP(24) - Analysis->Solution Controls in Solution Parameters dialog on Weighting tab.
- TEXP - Properties->Global Properties in Tough Global Data dialog on EOS tab. Select Molecular Diffusion and specify on Edit Coefficients dialog. For T2VOC on EOS tab.
- BE - Properties->Global Properties in Tough Global Data dialog on EOS tab. Select Molecular Diffusion and specify on Edit Coefficients dialog.
- DIFFO - Properties->Global Properties in Tough Global Data dialog on EOS tab. Only for T2VOC.

PARAM.2 Record
- TSTART - Analysis->Solution Controls in Solution Parameters dialog on Times tab.
- TIMAX - Analysis->Solution Controls in Solution Parameters dialog on Times tab.
- DELTEN - Automatically determined based on options selected in Analysis->Solution Controls in Solution Parameters dialog on Times tab. You can edit the table of time steps.
- DELTMX - Analysis->Solution Controls in Solution Parameters dialog on Times tab.
- ELST - Not implemented, instead select cell for printing in Edit Cells dialog.
- GF - Properties->Global Properties in Tough Global Data dialog on Misc tab.
- REDLT - Analysis->Solution Controls in Solution Parameters dialog on Times tab.
- SCALE - Properties->Global Properties in Tough Global Data dialog on Misc tab.

PARAM.2.1, 2.2, etc. Record
- Automatically written if table is used to give time steps in Analysis->Solution Controls in Solution Parameters dialog on Times tab.

PARAM.3 Record
- RE1 - Analysis->Solution Controls in Solution Parameters dialog on Convergence tab.
- RE2 - Analysis->Solution Controls in Solution Parameters dialog on Convergence tab.
- U - Analysis->Solution Controls in Solution Parameters dialog on Solver tab.
- WUP - Analysis->Solution Controls in Solution Parameters dialog on Weighting tab.
- WNR - Analysis->Solution Controls in Solution Parameters dialog on Weighting tab.
- DFAC - Analysis->Solution Controls in Solution Parameters dialog on Options tab.
PARAM.4 Record
- This record is not used. Instead, initial conditions for each element are written using the INCON record, see below.

INDOM
This record is not used. Instead, initial conditions for each element are written using the INCON record, see below.

INCON
These records are created for each element based on initial condition data. The appropriate data is EOS dependent. See the Initial Conditions chapter for help with defining initial conditions.

SOLVR
This record is written based on options selected in *Analysis>*Solution Controls in the Solution Parameters dialog on the Solver tab.

FOFT
The FOFT record defines a list of cells for which output data will be written to a file every time step. This record is written automatically by PetraSim, based on the cells that have been selected for detailed printing.

To select a cell for output, open the Edit Cells dialog (see Editing Cells). Go to the Print Options tab. Use the check box to turn on printing. In the Properties tab, you can give the cell a name that will be displayed in the plot. After the analysis is completed and a time history plot made, the data can be written to a file for import into a spreadsheet.

GOFT
Automatically written for all sources and sinks.

NOVER

NOVERsion Record
- *Analysis>*Output Controls in Output Controls dialog.

DIFFU

DIFFUsion Record
- All diffusion data is input from *Properties>*Global Properties in the Tough Global Data dialog on the EOS tab. Select Molecular Diffusion and then the Edit Coefficients button and dialog. Not valid for T2VOC.

SELEC

SELECtion Record
- Automatically written from data input on *Properties>*Global Properties in the Tough Global Data dialog on the EOS tab.
RPCAP
This record is not used. Instead, all data is written as part of ROCKS record.

TIMES

TIMES Record
- A table of output times can be specified in Analysis->Output Controls in the Output Controls dialog. These times are then written to the TIMES record.

ELEME
All element (cell) data is written based on the grid defined by the user.

CONNE
All connection data is written based on the grid defined by the user.

GENER
The GENER record defines a list of cells with source or sink boundary conditions. See 0.
16. Troubleshooting

Convergence Problems

It is inevitable that some of the analyses you run will stop execution before your specified end time. Usually this is because of convergence problems during the solution.

Diagnosing TOUGH2 convergence problems is not a trivial task. It requires that you view TOUGH2’s output file directly and understand the relationship between the printed output and the solver over time. When problems can't execute a single time step, this process is a bit easier because there is usually some indication of the erroneous input. However, when the simulation runs for several time steps before failing to converge (usually following a rapid sequence of time step size reductions) it is necessary to understand what transient change caused the problem.

Following is the step-by-step process used to look at one user's convergence problems. The user was learning about PetraSim and TOUGH2, so was developing the skills needed to run analyses.

STEP 1: Open the OUT file and look for messages printed before the data for the last time step. This will be before the text "THE TIME IS", so you can search for that text. A sample is copied below. DT is the time step and you can see that it has gotten very small -- 0.0488 sec. We also see that it cannot find the parameters for element 11126 and the problem is that the TEMPERATURE is out of range in SAT. The TEMPERATURE value is 0.999, so it looks like something is cooling down to freezing and TOUGH2 cannot handle that (the new TOUGH-FX version can handle freezing). Jump to step 2.

```
QQQQQQQQQQ SUBROUTINE QU QQQQQQQQQQQQQQQQQQQQ --- [KCYC,ITER] = [ 144,  1]
TEMPERATURE = 0.999981E+00 OUT OF RANGE IN SAT
+++++++++ CANNOT FIND PARAMETERS AT ELEMENT *11126* IND = 4
+++++++++ XX(M) = 0.118536E+06 0.549628E+00 0.999981E+00
+++++++++ REDUCE TIME STEP AT ( 144,  1) ++ NEW DELT = 0.488281E-01

QQQQQQQQQQ SUBROUTINE QU QQQQQQQQQQQQQQQQQQQQ --- [KCYC,ITER] = [ 144,  1]
11126( 144,  1) ST = 0.176848E+05 DT = 0.488281E-01 DX1= 0.000000E+00 ...

QQQQQQQQQQ SUBROUTINE QU QQQQQQQQQQQQQQQQQQQQ --- [KCYC,ITER] = [ 145,  1]
TEMPERATURE = 0.999996E+00 OUT OF RANGE IN SAT
+++++++++ CANNOT FIND PARAMETERS AT ELEMENT *11126* IND = 4
+++++++++ XX(M) = 0.118536E+06 0.549627E+00 0.999996E+00
+++++++++ REDUCE TIME STEP AT ( 145,  1) ++ NEW DELT = 0.244141E-01

QQQQQQQQQQ SUBROUTINE QU QQQQQQQQQQQQQQQQQQQQ --- [KCYC,ITER] = [ 145,  1]
11126( 145,  1) ST = 0.176848E+05 DT = 0.244141E-01 DX1= 0.000000E+00 ...

QQQQQQQQQQ SUBROUTINE QU QQQQQQQQQQQQQQQQQQQQ --- [KCYC,ITER] = [ 146,  1]
11126( 146,  1) ST = 0.176848E+05 DT = 0.488281E-01 DX1= 0.000000E+00 ...

QQQQQQQQQQ SUBROUTINE QU QQQQQQQQQQQQQQQQQQQQ --- [KCYC,ITER] = [ 147,  1]
TEMPERATURE = 0.999996E+00 OUT OF RANGE IN SAT
+++++ CANNOT FIND PARAMETERS AT ELEMENT *11126* IND = 4
+++++ XX(M) = 0.118536E+06 0.549627E+00 0.999996E+00
+++++ CONVERGENCE FAILURE ON TIME STEP # 147 WITH DT = 0.976562E-01 SECONDS,
FOLLOWING TWO STEPS THAT CONVERGED ON ITER = 1
STOP EXECUTION AFTER NEXT TIME STEP
+++++ REDUCE TIME STEP AT ( 147,  1) ++ NEW DELT = 0.244141E-01
```
STEP 2. Go to the bottom of the OUT file and do an upward search for 11126 with the intent of finding out the current state of that cell. However, the first hit is at the source/sink output and is listed below. So knowing that cell 11126 is a source/sink with a generation rate, the first guess is that the generation rate is larger than can be supported by the flow into the cell and as a result pressure and temperature are dropping in that cell. Go to step 3.

STEP 3: Continue the search for 11126 to get the state of the cell until we find the P, T, etc data, as given below (the last line is for cell 11126). This confirms that the temperature is dropping. The saturation of gas is also lower in this cell. So now let us go and look at the cell in more detail. Go to step 4.
STEP 4: Now we need to find the cell in the model. Cells are numbered in X,Y,Z order starting at the bottom layer. This example model has 36 cells in the X directly and 39 in the Y, so each layer has 36*39=1404 cells. If we divide 11126 by 1404, we get 7.9, which means this cell is in layer 8. We now go to layer 8 in the Grid Editor and see the cell with the Source/Sink in the upper left corner. Zoom in and right-click on the cell. Under Properties the cell ID is 11126, so this is the problem cell. Under Sources/Sinks we see that the user is injecting Water/Steam into this cell at a rate of 3.9 kg/s but with 0.0 enthalpy. BINGO! - zero enthalpy corresponds to water at absolute zero, so the cell is being cooled by very cold injection. We need to change the enthalpy to a realistic value. This means getting out the steam tables. You can either get out the old thermodynamics text or you can download an Excel spreadsheet from the Tools section of Help at our website at: http://www.thunderheadeng.com/petrasim.html.

Below is the steam table data for a temperature of 250 C and pressure of 2MPa (482 F and 290 psia). The enthalpy is 2901869.965 J/kg and the quality is pure vapor. So doing the calculation with this enthalpy would represent steam injection. Go to step 5.

<table>
<thead>
<tr>
<th>Input Data Here</th>
<th>English Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input (Do not change)</td>
<td></td>
</tr>
<tr>
<td>Temperature, C 250.00</td>
<td>Temperature, F 482.00</td>
</tr>
<tr>
<td>Pressure, Pa (abs) 2.00E+06</td>
<td>Pressure, psia 290.08</td>
</tr>
<tr>
<td>Quality, 0=L, 100=V</td>
<td>Quality, 0=L, 100=V 0</td>
</tr>
<tr>
<td>Spec volume, m3/kg</td>
<td>Spec volume, ft3/lb</td>
</tr>
<tr>
<td>Enthalpy, J/kg</td>
<td>Enthalpy, btu/lb 0</td>
</tr>
<tr>
<td>Entropy, J/kg/C</td>
<td>Entropy, btu/lb/f 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature, C 250.00</td>
<td>Temperature, F 482.000</td>
</tr>
<tr>
<td>Pressure, Pa 2.00E+06</td>
<td>Pressure, psia 290.08</td>
</tr>
<tr>
<td>Quality, 0=L, 100=V 100.00</td>
<td>Quality, 0=L, 100=V 100.00</td>
</tr>
<tr>
<td>Spec volume, m3/kg 0.111450802</td>
<td>Spec volume, ft3/lb 1.7852</td>
</tr>
<tr>
<td>Enthalpy, J/kg 2901869.965</td>
<td>Enthalpy, btu/lb 1247.79</td>
</tr>
<tr>
<td>Entropy, J/kg/C 6544.287025</td>
<td>Entropy, btu/lb/f 1.5633</td>
</tr>
<tr>
<td>Tsat, C 212.38</td>
<td>Tsat, F 414.3</td>
</tr>
<tr>
<td>Psat, Pa 3.99E+07</td>
<td>Psat, psia 576.90</td>
</tr>
<tr>
<td>Deg superheat, C 19.85</td>
<td>Deg superheat, F 67.7</td>
</tr>
<tr>
<td>Deg subcool, C -17.78</td>
<td>Deg subcool, F 0.0</td>
</tr>
<tr>
<td>Viscosity, Pa-s 1.79E-05</td>
<td>Viscosity, lb-sec/ft2 3.74E-07</td>
</tr>
<tr>
<td>Crit velocity</td>
<td>Crit velocity 1480.67</td>
</tr>
<tr>
<td>Density, kg/m3 8.972568916</td>
<td>Density, lb/ft3 0.5602</td>
</tr>
<tr>
<td>SG 0.009</td>
<td>SG 0.009</td>
</tr>
<tr>
<td>Viscosity, poise (P) 1.79E-04</td>
<td></td>
</tr>
</tbody>
</table>

STEP 5: Change the enthalpy to an appropriate value, then try to run again. This might not fix everything. For example, maybe the rate you are using for injection will be larger than can be supported by flow to the adjacent cells and the pressure may become too large in the injection cell. This will again be an indication of an unrealistic problem.

Licensing/Registration Problems
If you experience trouble registering PetraSim, please contact <Alison@rockware.com>.
Contacting Technical Support
Questions and suggestions should be sent to support@thunderheadeng.com or by phone to +1.785.770.8511.
References

15. **Pruess, Karsten.** *Personal communication.* 2003. email.

Index

D

- **Darcy’s Law** .. 3
- **Dialog**
 - Add internal boundary 40
 - Additional material data 56
 - Assign cell materials data 59
 - Boundary editor ... 31
 - Capillary pressure .. 57
 - Create mesh .. 46
 - Default initial conditions 61
 - Edit Cell .. 50
 - Edit cell data ... 62
 - Edit extra cell .. 52
 - Edit layers ... 34
 - Edit region data .. 62
- **Initial conditions** ... 61
- **Load initial conditions** 63
- **Material data** .. 100
- **Miscellaneous material data** 58
- **Output controls** .. 80
- **Relative permeability data** 56
- **Save** .. 83
- **Scalar properties** .. 85
- **Solution controls** ... 74
- **Tough Global Data (MINC)** 97
- **TOUGH2 simulation run** 82
- **Vector properties** .. 85
- **Disable Cells** ... 52
- **DXF File Format** .. 30

E

- **Enabled Cells** ... 52
- **Energy balance** .. 7
- **EOS** .. 9
- **Equations of state** 9
- **Example Problems** 14
- **Export 3D plot data** 89
- **Extra Cells** .. 52

F

- **Faults** .. 40
- **File**
 - New .. 28
 - Open ... 28
 - PetraSim (*.sim) ... 28
 - TOUGH Input (*.dat) 28
- **File Format**
 - Contour .. 28
 - DXF ... 30
- **Fixed Boundary Conditions** 63
- **Fixed State Cells** 52
- **Flow in fractured media** 97, 99
- **Flow in Porous Media** 3

I

- **Initial conditions** ... 61
- **Internal Boundaries** 40